Research Papers:
MicroRNAs 125a and 125b inhibit ovarian cancer cells through post-transcriptional inactivation of EIF4EBP1
Metrics: PDF 2185 views | HTML 3033 views | ?
Abstract
Maria Lee1,*, Eun Jae Kim1,* and Myung Jae Jeon1
1 Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
* These authors have contributed equally to this study
Correspondence to:
Maria Lee, email:
Keywords: microRNA, microRNA 125a, microRNA 125b, epithelial ovarian cancer, EIF4EBP1
Received: June 04, 2015 Accepted: November 25, 2015 Published: December 05, 2015
Abstract
The aim of the present study was to identify the specific miRNAs involved in regulation of EIF4EBP1 expression in ovarian cancer and to define their biological function. miRNA mimics and miRNA inhibitors were used in quantitative PCR, western blotting, and luciferase reporter assays to assess cell migration, invasiveness, and viability. miR-125a and miR-125b were downregulated in ovarian cancer tissue and cell lines relative to healthy controls. Increased expression of miR-125a and miR-125b inhibited invasion and migration of SKOV3 and OVCAR-429 ovarian cancer cells and was associated with a decrease in EIF4EBP1 expression. The inverse relationship between miR-125a and miR-125b was corroborated by cotransfection of a luciferase reporter plasmid. Furthermore, miR-125a and miR-125b caused apoptosis and decreased cell viability and migration in an apparently EIF4EBP1-directed manner. Collectively, these results indicate that miR-125a and miR-125b are important posttranscriptional regulators of EIF4EBP1 expression, providing rationale for new therapeutic approaches to suppress tumour invasion and migration using miR-125a, miR-125b, or their mimics for the treatment of ovarian cancer.
![Creative Commons License](/images/80x15.png)
PII: 6474