Oncotarget

Research Papers:

Exosomal cancer immunotherapy is independent of MHC molecules on exosomes

Stefanie Hiltbrunner _, Pia Larssen, Maria Eldh, Maria-Jose Martinez-Bravo, Arnika K. Wagner, Mikael C.I. Karlsson and Susanne Gabrielsson

PDF  |  HTML  |  Supplementary Files  |  How to cite

Oncotarget. 2016; 7:38707-38717. https://doi.org/10.18632/oncotarget.9585

Metrics: PDF 3444 views  |   HTML 4339 views  |   ?  


Abstract

Stefanie Hiltbrunner1,*, Pia Larssen1,*, Maria Eldh1, Maria-Jose Martinez-Bravo1, Arnika K. Wagner2, Mikael C.I. Karlsson2, Susanne Gabrielsson1

1Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institute, and Karolinska University Hospital, SE-171 76 Stockholm, Sweden

2Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, SE-171 77 Stockholm, Sweden

*These authors have contributed equally to this work

Correspondence to:

Susanne Gabrielsson, email: [email protected]

Keywords: exosomes, immunotherapy, MHC class I, extracellular vesicles, cancer

Received: March 03, 2016    Accepted: April 28, 2016    Published: May 25, 2016

ABSTRACT

Peptide-loaded exosomes are promising cancer treatment vehicles; however, moderate T cell responses in human clinical trials indicate a need to further understand exosome-induced immunity. We previously demonstrated that antigen-loaded exosomes carry whole protein antigens and require B cells for inducing antigen-specific T cells. Therefore, we investigated the relative importance of exosomal major histocompatibility complex (MHC) class I for the induction of antigen-specific T cell responses and tumour protection. We show that ovalbumin-loaded dendritic cell-derived exosomes from MHCI-/- mice induce antigen-specific T cells at the same magnitude as wild type exosomes. Furthermore, exosomes lacking MHC class I, as well as exosomes with both MHC class I and II mismatch, induced tumour infiltrating T cells and increased overall survival to the same extent as syngeneic exosomes in B16 melanoma. In conclusion, T cell responses are independent of exosomal MHC/peptide complexes if whole antigen is present. This establishes the prospective of using impersonalised exosomes, and will greatly increase the feasibility of designing exosome-based vaccines or therapeutic approaches in humans.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 9585