Research Papers:
Spheroid cancer stem cells display reprogrammed metabolism and obtain energy by actively running the tricarboxylic acid (TCA) cycle
PDF | HTML | Supplementary Files | How to cite
Metrics: PDF 2372 views | HTML 3592 views | ?
Abstract
Masakazu Sato1, Kei Kawana1, Katsuyuki Adachi1, Asaha Fujimoto1, Mitsuyo Yoshida1, Hiroe Nakamura1, Haruka Nishida1, Tomoko Inoue1, Ayumi Taguchi1, Juri Takahashi1, Satoko Eguchi1, Aki Yamashita1, Kensuke Tomio1, Osamu Wada-Hiraike1, Katsutoshi Oda1, Takeshi Nagamatsu1, Yutaka Osuga1, Tomoyuki Fujii1
1Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
Correspondence to:
Kei Kawana, email: [email protected]
Keywords: cancer stem cell (CSC), metabolomics, ovarian cancer, cervical cancer, tricarboxylic acid (TCA) cycle
Received: February 01, 2016 Accepted: March 28, 2016 Published: April 23, 2016
ABSTRACT
The Warburg effect is a metabolic hallmark of cancer cells; cancer cells, unlike normal cells, exclusively activate glycolysis, even in the presence of enough oxygen. On the other hand, intratumoral heterogeneity is currently of interest in cancer research, including that involving cancer stem cells (CSCs). In the present study, we attempted to gain an understanding of metabolism in CSCs that is distinct from that in non-CSCs. After forming spheroids from the OVTOKO (ovarian clear cell adenocarcinoma) and SiHa (cervical squamous cell carcinoma) cell lines, the metabolites of these cells were compared with the metabolites of cancer cells that were cultured in adherent plates. A principle components analysis clearly divided their metabolic features. Amino acids that participate in tricarboxylic acid (TCA) cycle reactions, such as serine and glutamine, were significantly increased in the spheroids. Indeed, spheroids from each cell line contained more total adenylates than did their corresponding cells in adherent cultures. This study demonstrated that cancer metabolism is not limited to aerobic glycolysis (i.e. the Warburg effect), but is flexible and context-dependent. In addition, activation of TCA cycles was suggested to be a metabolic feature of CSCs that was distinct from non-CSCs. The amino acid metabolic pathways discussed here are already considered as targets for cancer therapy, and they are additionally proposed as potential targets for CSC treatment.
All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 8947