Research Papers: Pathology:
Crosstalk between Ca2+ signaling and mitochondrial H2O2 is required for rotenone inhibition of mTOR signaling pathway leading to neuronal apoptosis
PDF | HTML | Supplementary Files | How to cite
Metrics: PDF 2815 views | HTML 5817 views | ?
Abstract
Chunxiao Liu1,*, Yangjing Ye1,*, Qian Zhou1, Ruijie Zhang1, Hai Zhang1, Wen Liu1, Chong Xu1, Lei Liu2, Shile Huang2,3 and Long Chen1
1 Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, PR China
2 Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
3 Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA
* These authors have contributed equally to this work
Correspondence to:
Long Chen, email:
Shile Huang, email:
Keywords: rotenone, apoptosis, calcium ion, CaMKII, H2O2, mTOR, Pathology
Received: October 11, 2015 Accepted: January 24, 2016 Published: February 03, 2016
Abstract
Rotenone, a neurotoxic pesticide, induces loss of dopaminergic neurons related to Parkinson’s disease. Previous studies have shown that rotenone induces neuronal apoptosis partly by triggering hydrogen peroxide (H2O2)-dependent suppression of mTOR pathway. However, the underlying mechanism is not fully understood. Here, we show that rotenone elevates intracellular free calcium ion ([Ca2+]i) level, and activates CaMKII, resulting in inhibition of mTOR signaling and induction of neuronal apoptosis. Chelating [Ca2+]i with BAPTA/AM, preventing extracellular Ca2+ influx using EGTA, inhibiting CaMKII with KN93, or silencing CaMKII significantly attenuated rotenone-induced H2O2 production, mTOR inhibition, and cell death. Interestingly, using TTFA, antimycin A, catalase or Mito-TEMPO, we found that rotenone-induced mitochondrial H2O2 also in turn elevated [Ca2+]i level, thereby stimulating CaMKII, leading to inhibition of mTOR pathway and induction of neuronal apoptosis. Expression of wild type mTOR or constitutively active S6K1, or silencing 4E-BP1 strengthened the inhibitory effects of catalase, Mito-TEMPO, BAPTA/AM or EGTA on rotenone-induced [Ca2+]i elevation, CaMKII phosphorylation and neuronal apoptosis. Together, the results indicate that the crosstalk between Ca2+ signaling and mitochondrial H2O2 is required for rotenone inhibition of mTOR-mediated S6K1 and 4E-BP1 pathways. Our findings suggest that how to control over-elevation of intracellular Ca2+ and overproduction of mitochondrial H2O2 may be a new approach to deal with the neurotoxicity of rotenone.
All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 7183