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ABSTRACT

Identification of cancer subtypes and associated molecular drivers is critically
important for understanding tumor heterogeneity and seeking effective clinical
treatment. In this study, we introduced a simple but efficient multistep procedure to
define ovarian cancer types and identify core networks/pathways and driver genes
for each subtype by integrating multiple data sources, including mRNA expression,
microRNA expression, copy number variation, and protein-protein interaction data.
Applying similarity network fusion approach to a patient cohort with 379 ovarian
cancer samples, we found two distinct integrated cancer subtypes with different
survival profiles. For each ovarian cancer subtype, we explored the candidate
oncogenic processes and driver genes by using a network-based approach. Our
analysis revealed that alterations in DLST module involved in metabolism pathway
and NDRG1 module were common between the two subtypes. However, alterations in
the RB signaling pathway drove distinct molecular and clinical phenotypes in different
ovarian cancer subtypes. This study provides a computational framework to harness
the full potential of large-scale genomic data for discovering ovarian cancer subtype-
specific network modules and candidate drivers. The framework may also be used
to identify new therapeutic targets in a subset of ovarian cancers, for which limited
therapeutic opportunities currently exist.

INTRODUCTION

Ovarian cancer is a major cause of cancer-related
mortality in women, with an estimated 21,290 new cases
and 14,180 deaths predicted for 2015 in the United States
[1]. Over the past few decades, genetic studies have
elucidated some crucial genetic alterations implicated in
the pathogenesis of ovarian cancer. The rapid development
of next-generation sequencing technologies in recent years
has facilitated the identification of numerous somatic
genetic alterations in ovarian cancer. These somatic
genetic alterations are classified as drivers or passengers,
and distinguishing these two remains a challenge in cancer
research.

Instead of individual genes, signaling pathways
and networks control the biology of tumorigenesis and
cancer development. Expert-curated pathways have been

employed to interpret genetic alterations [2, 3]. Although
helpful, these approaches are restricted by the coverage
of curated pathways [4]. Consequently, network-based
methods such as NetWalker [5] and Netbox [6] have been
developed and extensively used to extract the subnetworks
that are enriched with genetic alterations.

Network-based approaches elucidate the system
level of complex genetic alterations. However, current
studies often compare all tumor samples with normal
samples, thereby identifying signaling pathways common
to all cancer samples but ignoring the heterogeneity.
Tumor subtypes represent different biological processes;
thus, cancer subtype analysis is suitable to understand
the cancer heterogeneity and seek therapy treatment for
different subtypes. Various subtypes of ovarian cancer
have been recently identified from the different types
of data and methods used. For example, The Cancer

www.impactjournals.com/oncotarget

4298

Oncotarget



Genome Atlas (TCGA) identified four transcriptional
subtypes based on gene expression data [2]. Tothill et al.
[7] applied an unsupervised clustering to the mRNA data
of epithelial ovarian cancer and identified six subtypes.
Yuan et al. [8] identified three subtypes derived from
ovarian cancer microRNA (miRNA) expression through
non-negative matrix factorization. However, investigation
of tumor subtypes based on the combination of genetic and
epigenetic factors was often ignored. Moreover, subtype
and network analyses play vital roles in cancer research,
but existing studies usually performed subtype analysis in
isolation and failed to determine the driving force behind
each subtype.

In this study, we developed a novel integrative
genomics approach for defining ovarian cancer types and
identifying core networks/pathways and driver genes for
each subtype. Figure 1 shows the schematic overview of
methods used in our study. Firstly, we discovered two
molecular subtypes of ovarian cancer by simultaneously
clustering mRNA and miRNA expression data derived
from TCGA ovarian cancer samples with similarity
network fusion (SNF) approach [9]. We then used
an integrated network-based approach [6] to identify
frequently altered network modules and candidate drivers
in each ovarian cancer subtype. Collectively, our result
demonstrates the ability of integrative genomics to
identify ovarian cancer subtype-specific network modules
and candidate drivers.

RESULTS

Identification of two molecular subtypes in
ovarian cancer

Multiple methods have been applied to identify
ovarian cancer subtypes. The use of various data and
analysis methods often results in different conclusions. For

example, TCGA identified four transcriptional subtypes
on the basis of gene expression data [2]. However, these
four subtypes show no significant correlation with survival
difference. Integrating mRNA and miRNA may be a
powerful approach to identify clinically relevant subtypes.

In this study, we used SNF [9] to fuse two data types,
namely, mRNA expression (17,813 genes) and miRNA
expression (798 miRNAs), for 379 ovarian cancer patients.
Details are described in the Materials and Methods section.
We chose the group with a minimum P value in the Cox
log-rank test. Figure 2 shows that SNF reliably identified
two ovarian cancer subtypes (157 cases in subtype 1 and
222 cases in subtype 2) with distinct survival differences.
The majority of patients with subtype 2 ovarian cancer
(58.6%; 222 of 379 cases) had significantly shorter overall
survival durations than those with subtype 1 ovarian
cancer (P =0.0128, log-rank test; Figure 2).

Properties of the ovarian cancer subtype 1
network

A total of 493 genes that exceeded the frequency
threshold were retained and served as altered genes for
ovarian cancer subtype 1, as described in the Materials
and Methods section. We then used NetBox [6], a well-
established method, to extract 56 altered genes and 5 linker
genes (linker genes are not altered in ovarian cancer, but are
statistically enriched for connections to ovarian cancer altered
genes) and identify a total of 8 modules (Supplementary
Table S1), with an overall network modularity of 0.326.
However, the 1000 simulated random networks have an
average modularity of 0.018, with a standard deviation of
0.01. This resulted in a scaled modularity score of 30.8,
which indicates that the ovarian cancer subtype 1 network is
more modular than random network.

Among the 8 modules identified in ovarian cancer
subtype 1, four are connected and comprise a large network

Subtype | .I‘ ‘,

Subtype 2

{

HIN

W Alered
[] Notaltered

Figure 1: Schematic overview of method used in our study. Overview of the approach used for identify core modules for
individual subtypes. Given the gene expression and miRNA expression data sets for different patients and genes, the SNF alogrithm
fused these two data types and obtained the final cluster. We then extracted the subtype-specific genomic aberration matrix, and utilized
a literature curated Human Interaction Network (HIN). Finally, NetBox was used to assess the level of connectivity seen within each of
subtype networks and identify the network modules and candidate drivers.
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(Figure 3A). These modules are involved in critical
signaling pathways. For example, alterations within the
RHOA module include MAPK11 and MAPK12, which are
members of the p38 MAPK pathway. MAPK signaling is
associated with human cancers, including ovarian cancer
[10]. Previous study has revealed an association between
MAPK expression, and the clinical course of ovarian cancer,
which suggests an in vivo role for this signal transduction
pathway in ovarian carcinoma [11].

We also identified a NDRG1 (N-myc downstream-
regulated gene 1) module. NDRGIis a cancer-related gene
that is strictly up-regulated under hypoxic conditions
[12] and is directly targeted by p53 [13]. Biological
experiments have revealed that NDRG was associated
with ovarian cancer metastases [14].

The most densely interconnected network is
the DLST module, which contains many members of
metabolic pathways, including those involved in ATP
synthase (ATP50, ATP5D, ATP5H, ATP5L, ATP5GI,
ATP5J, ATP5B, ATP5F1, ATP5A1, ATPSE, ATP5D) [15],
and DLST, which play a role in the citric acid cycle [16].
As shown in Figure 4, upstream oncogenic pathways that
monitor cell conditions can affect metabolism, which leads
to the activation of downstream signaling pathways [13].
Bonnet et al. [17] proposed that cancer cells may convert
oxidative metabolism to anaerobic metabolism to escape
cell death. Overall, accumulating evidence indicated that
alterations in metabolic pathways may play a crucial role
in ovarian cancer subtype 1 development.

NetBox [6] can also identify candidate driver
genes. For example, the most notable and significant

candidate gene within the NDRG1 module is NDRGI,
which connects hypoxic reaction and p53-mediated
responses [12]. ILF3 is another important gene in the
NDRG1 module, where it has been shown to be involved
in ovarian cancer [18]. PRKACA involves in lung cancer
epithelial-mesenchymal transition, migration, and
invasion [19]. Further evidence suggested that the cAMP
signaling pathway can be activated through PRKACA
mutation in cancer [20].

Identification of additional modules and
candidate drivers for ovarian cancer subtype 1
network

Four additional modules aside from the four main
modules were identified by network analysis; three of
these modules contain at least three genes (Figure 5).

The SMARCA4 module (Figure 5A) includes 11
genes: FGFR3, RPLS, EEFID, CTBP1, MYC, PARPI0,
ACTL6A4, SMARCA4, CCNEI, HSF1, and DNAJBI.
FGFR3 genetic alterations frequently occur in myeloma
and bladder cancers, suggesting that this molecule plays
a vital role in carcinogenesis [21]. EEFID strongly
correlates with gene expression in ovarian clear cell
adenocarcinomas [22]. An obvious feature of ovarian
cancer is the presence of recurrent regions of copy
number gains or losses [2], and rare recurrent genomic
events contain known oncogenes [2], such as MYC and
CCNE] in our analysis. The POLR2H module includes
three genes, namely, POLR2H, CPSFI, and WHSC?2.
Gene expression correlates with the copy number in
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Figure 2: Kaplan-Meier plot. The two integrated subtypes of ovarian cancer identified by SNF show survival difference.
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this module (Figure 5B). The LY6H module is altered
in 24% of ovarian cancer subtype 1 cases (Figure 5C)
and includes three altered genes, namely, DVL3, LY6H,
and PPPIR16A.

Properties of the ovarian cancer subtype 2
network

A total of 457 genes that exceeded the frequency
threshold were retained and served as altered genes for
ovarian cancer subtype 2, as described in the Materials and
Methods section. After importing these genes into NetBox,
59 altered genes were automatically extracted and five linker
genes were identified. Using the module detection algorithm
in NetBox, we detected 14 modules (Supplementary Table
S2), with an overall network modularity of 0.608. The 1000
simulated random networks have an average modularity of
0.367, with a standard deviation of 0.041. This resulted in
a scaled modularity score of 17.2, which indicates that the
ovarian cancer subtype 2 network is also more modular than
random network.

The major members of the network modules
identified in ovarian cancer subtype 2 are summarized
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in Figure 6A. The one with the largest density connected
in the network is the DLST module. All members of the
network are involved in the metabolic pathway, among
which IDH3B, IDH3A4, IDH3G, and DLST participate in
the tricarboxylic acid cycle [16, 23, 24]. The relationship
between cancer and altered metabolism was observed
during the early period of cancer research; it has been
demonstrated that altered metabolism is a common
phenomenon observed in cancerous tissues [25], which has
raised interest in targeting metabolic enzymes of cancer
cells [26]. Cancer cells modify their metabolic pathways to
satisfy their increasing energy demands during carcinoma
proliferation [27]. Cairns [27] considered the alterations of
cellular metabolism as a vital hallmark of ovarian cancer.
Therefore, drugs that can target cancer metabolism have a
great potential in human cancer therapy [26]. For example,
IDH3A is an up-regulated protein involved in oxidative
metabolism in metastatic breast cancer [28]. IDH3G
was identified in a module and as a hub gene associated
with endometrial cancer [29], which is consistent with
our results. Therefore, we hypothesized that these genes
associated with metabolism contribute to ovarian cancer
progression.
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Figure 3: Network modules identified in ovarian cancer subtype 1. (A) Modules are closely connected which may reflect
oncogenic processes. A total of 8 modules were identified, the largest of which are shown. (B) The observed modularity of the ovarian
cancer subtype 1 network (0.326) compared with 1000 randomly rewired networks (average 0.018, standard deviation 0.01). (C) Linker
genes, which are not altered in ovarian subtype 1, but statistically enriched for connections to ovarian cancer subtypel altered genes.
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The module with the second largest density of
internal connections is NDRGI. Figure 6 shows that
NDRG1 is directly connected to DLST, suggesting that
the NDRG1 module is also involved in metabolism. As
previously discussed, the alteration of cellular metabolism
is an important feature in cancer. Hypoxia has an effect

on tumor metabolism [30]. Hypoxia is an inducer of the
NDRG1 gene that can interact with the oxygen sensory
pathway (Figure 4). Therefore, the NDRGI1 and DLST
modules may combine to regulate the metabolic pathway.
In the NDRG1 module, PSMD?2 is overexpressed in
many cancer cells [31], whereas PABPCI, EIF4Gl,

Tumor microenvironment
(such as hypoxia)

i

MYC

NDRGI1

Abnormal metabolic
phenotype

Figure 4: Schematic diagram of the hypoxia regulation and their consequence. Tumor metabolism is controlled by intrinsic
genetic mutation (MYC) and hypoxia. The tumor gene, MYC, can regulate the expression of NDRG1 that potentially improve the likelihood

of metastasis.
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Figure 5: Network analysis identifies additional altered modules for ovarian cancer subtype 1. Each module (Module
(A): SMARCA4 module; Module (B): POLR2H module; Module (C): LY6H module) is annotated with chromosome location, statistical
significance between copy number and mRNA expression, and genomic status across ovarian cancer subtype one samples. |A] represents
gene expression correlates with copy number, as determined by ANOVA analysis across 157 ovarian cancer cases with copy number and
expression data. |B| represents percentage of ovarian cancer cases in which gene is altered.
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EIF3H, EIF3E, and EIF3K are RNA translational control
members. As a response to tumor stress (e.g., hypoxia),
mRNAs encoding proteins are selectively translated
because translational control is vital for cancer growth and
progression [32].

Identification of additional modules and
candidate drivers for ovarian cancer subtype 2
network

We identified several known pathways when
searching for the altered networks in HIN (Human
Interaction Network) by using NetBox. For example,
the RB1 module contains genes RBI, MYC, ACTL6A,
PARPI10, and CCNEI (Figure 7B). Ovarian cancer
usually escapes from cell cycle regulation through genetic
alterations to the RB pathway [33]. RB/ is a significantly
genetic alteration gene, and the RB pathway is regulated
in 67% of ovarian cancer cases [2]. The RBI gene is only
existed in the module of ovarian cancer subtype 2, and
the main difference between the two subtypes is found
in the RB pathway. In particular, subtype 2 (with the
RB pathway) has a shorter survival rate than subtype 1.
Survival analysis among anaplastic astrocytoma cancer
samples reveals that dysregulation of the RB signaling
pathway negatively correlates with survival [34]. Previous
studies have shown the case that cancers with genetic
alterations in the RB pathway often have worse overall
survival than those without such alterations [35]. Our
results were in line with these previous reports [34, 35],
suggesting that the two subtype survival differences
can be explained by the worse survival of RB pathway
subtypes. Aside from RB1, PARP10, MYC, ACTL6A, and
CCNE] are also included in this module. PARPI0 is a
MY C-interacting protein that plays a tumor-suppressive
role [36]. MYC is a key regulator of cell growth and
division, deregulation of MYC result in uncontrolled cell
proliferation and tumor progression [37].
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DLST 12 117 1.32E-05 0.0104
IDH3G 9 77 5.74E-05 0.0121
IDH3A 9 78 6.35E-05 0.0121
ATP5AL 10 98 7.12E-05 0.0121
IDH3B 9 80 7.71E-05 0.0121

Percentage

Another PIK3CA module includes five genes
(Figure 7A), namely, PTK2, ANGPTI, PIK3CA, SDC2,
and MAPKII. The CPSF1 module (Figure 7C) also
includes five genes: NFKBIB, POLR2H, HNRNPL,
POLR2K, and CPSFI. NFKBIB plays a critical role in
regulating NF-«B signaling pathway, which involved in
key cellular processes, including cell proliferation, cell
survival, inflammatory and immune responses [38]. The
PRSS23 module (Figure 7D) includes RECQL4, PRSS23,
MAPKSIP2, and FXR1, and the correlation between gene
expression and copy number has no statistical significance
in the module. The MAPK 12 module (Figure 7E) includes
four genes, namely, SNTB1, MAPK12, DLG2, and FZDA4,
among which only MAPKI2 and DLG2 are associated
with kinase activity. The two other modules found are

presented in Supplementary Table S2.

Identification of miRNAs that target RB1

Using the MiRTarbase database [39], we only
considered three pieces of evidence with strongly evidence
and found 11 miRNAs (miR-132, miR-221, miR-335,
miR-192, miR-106a, miR-106b, miR-519a, miR-215,
miR-212, miR-26b, miR-26a) that target RB1. We then
performed a differential miRNA analysis. Although both
of the upregulated and downregulated miRNAs deserve an
in-depth investigation, here we focused on the upregulated
miRNAs that tend to reduce RB1 expression. P-value
< 0.01 and fold change > 1.2 were defined as upregulated
miRNA, and miR-132 (P-value: 2.6 x 107, fold change:
1.2), miR-221(P-value: 4 x 10*, fold change: 1.3), and
miR-212(P-value: 1.3 x 107, fold change: 1.2) were
obtained.

Both miR-132 and miR-212 are located on
chromosome 17p13, which were predicted to target the
tumor suppressor RB/ and reduce its levels. miR-132/-
212 is reportedly overexpressed in pancreatic cancer [40],
but the cause of miR-132/-212 upregulation in ovarian
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Figure 6: Network modules identified in ovarian cancer subtype 2. (A) Modules are closely connected which may reflect
oncogenic processes. A total of 14 modules were identified, the largest of which are shown. (B) The observed modularity of the ovarian
cancer subtype 2 network (0.608) compared with 1000 randomly rewired networks (average 0.367, standard deviation 0.041). (C) Linker
genes, which are not altered in ovarian subtype two, but are statistically enriched for connections to ovarian cancer subtype 2 altered genes.
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cancer subtype remains unknown. We proposed that miR-
132/-212 targets RB1 and promotes tumor proliferation.
Several studies have indicated that high expression
levels of miR-221 in tumor tissues are associated with
overall survival in hepatocellular carcinoma, T-cell
acute lymphoid leukemia, thyroid papillary carcinoma,
pancreatic adenocarcinoma, and GBM [41, 42]. Hong
et al. [43] reported that high serum miR-221 expression
in human epithelial ovarian cancer correlates with
short overall survival. Therefore, miR-221 may play an
important role in the progression of malignancies. The
molecular mechanism that links miR-221 overexpression
to short overall survival is not well understood. In
addition, a one-to-one correspondence between miRNAs
and their target genes does not exist. Therefore, identifying
the miRNAs that are important for regulating RB1 remains
a crucial aspect of future investigations.

Pathways associated with ovarian cancer
subtype-specific network

We conducted pathway analysis for each ovarian
cancer subtype using an ontology-based pathway database
[44] in DAVID [45] to associate ovarian cancer subtype-
specific networks with known pathways (Supplementary
Table S3). We filtered out GO terms with an adjusted
P > 0.05. Angiogenesis and p53 pathway were enriched
in two ovarian cancer subtypes, although at different
levels of significance. It is notably that angiogenesis is

a hallmark of cancer [46]. In addition, the ovarian cancer
subtype 1 were markedly enriched with genes in the Ras
Pathway, and subtypes 2 was enriched with genes in
VEGEF signaling pathway and B cell activation. Previous
study has revealed that the enhanced expression of VEGF
are correlated with patient survival and tumor metastasis
[47]. These results suggest that targeting the VEGF
pathway or simultaneously targeting the VEGF and B cell
activation pathway seem like rational choices for ovarian
cancer subtype 2 patients, which have a shorter survival
time compared with ovarian cancer subtype 1 patients.

DISCUSSION

Previous studies usually stimulated one data
type to identify ovarian cancer subtypes, whereas we
systematically identified two subtypes in ovarian cancer
by integrating mRNA and miRNA data. Compared to other
three ovarian cancer subtypes (log-rank test, P = 0.043)
identified by Yuan et al. [8], our identified two subtypes
have a significant overall survival difference (log-rank
test, P =0.0128) between the two subtypes.

After discovering two ovarian cancer subtypes, we
used a subtype-based core module inference strategy to
decipher subtype genomic alterations. Instead, existing
studies often focus on network analysis in cancer cohorts
without considering cancer subtypes. These methods inclined
to identify networks common in many neoplasm samples
and ignore the heterogeneity among cancer subtypes.
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Figure 7: Network analysis identifies five additional altered modules for ovarian cancer subtype 2. Each module (Module
(A) PIK3CA module; Module (B) RB1 module; Module (C) CPSF1 module; Module (D) PRSS23 module; Module (E) MAPK 12 module)
is annotated with chromosome location, statistical significance between copy number and mRNA expression, and genomic status across
ovarian cancer subtype one samples. |A| represents gene expression correlates with copy number, as determined by ANOVA analysis across
222 ovarian cancer cases with copy number and expression data. |B| represents the percentage of ovarian cancer cases in which gene is
altered.
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Table 1: Distinct core modules driving two ovarian cancer subtypes biology and clinical outcome

Main module

Syr-survival rate

Metabolism NDRG1 RB1 ZHX1 Stage I-1V Stage I1I-1V
Subtype 1 \ \ x \ 16.7% 15.4%
Subtype 2 \ \ \ 12.7% 11.7%

We explored the CNA (copy number alternation)
among the two subtypes in ovarian cancer and identified
core modules that provide a consistent and integrated
picture of two subtypes and link genomic alternations to
biological processes. Our analysis reveals that genomic
alterations in the metabolism and NDRGD1 pathway
were common in the two subtypes, consistent with its
critical role in the initiation of each subtype. However,
the cohesion of core module networks drives distinct
molecular phenotypes in the two ovarian cancer subtypes.
Activation of both NDRGD1 and DLST modules may
promote the metabolic signaling pathway. For subtype 2,
genomic alterations in the RB signaling pathway may
activate the pathway continually and disrupt cell cycle and
proliferation [48]. Moreover, the RB pathway has a strong
association with poor survival in many cancers, including
GBM [35] and ovarian cancer [49]. Therefore, alternations
in the RB signaling pathway may prompt subtype 2 to
suffer a poor clinical outcome (Table 1). On the contrary,
no RBI1 signaling pathway may help subtype 1 result in a
favorable clinical outcome.

Our findings not only present a comprehensive
understanding of ovarian cancer but also provide
guidance orientation on possible personalized therapeutic
approaches for different subtypes. Targeting the metabolic
pathway or simultaneously targeting the RB signaling
pathway is a rational choice for efficient cancer therapy.
However, clinical trials on targeting metabolic pathway
and RB pathway therapies for ovarian cancer patients
have reached inconsistent conclusions [26, 50]. Therefore,
clinical trials should consider the cancer subtypes of
patients because subtype 2 (with activated RB signaling
pathway) may be more sensitive to anti-RB therapy than
subtype 1.

In summary, our study elucidated the molecular
mechanisms underlying ovarian cancer subtypes and
helped identify candidate driver genes by using an
automated network method. Heterogeneity is a common
phenomenon in cancer, and our results implied that
heterogeneity also exists in the two subtypes. In the
future, individualized treatment should not be confined
to the therapeutic strategies for ovarian subtype-specific
therapy; rather, patient-specific driver gene predictions
and therapy should be the focus of medical development.
Potential driver modules may serve as determining factors
for cancer progression and survival time. Further studies
are required to explore this hypothesis.

MATERIALS AND METHODS
Data acquisition and processing

We downloaded gene expression (Agilent G4502A)
data, miRNA (Agilent 8 x 15 K human miRNA-specific
microarray platforms) data, survival data, and clinical
data from the Synapse website (http://www.synapse.
org, accession number syn1710282). DNA copy number
data were obtained from the TCGA (https://tcga-data.
nci.nih.gov/tcga/), which was analyzed by GISTIC2.0
[51]. Only the homozygous deletions and amplifications
were considered as copy number alternations (CNAs).
We generated a binary matrix of genetic alteration, in
which score 1 represents the ith gene in the jth sample
with a genetic alteration, and score 0 represents otherwise.
Some samples contained several genetic alteration genes,
whereas other samples contained numerous genetic
alteration genes. To assign a higher weight to this genomic
alteration, we considered column-wise normalization,
which mainly contains two steps. First, we performed row-
wise summarization for each matrix; second, we converted
each matrix into a vector. For each subtype, n denotes the
total number of genes in each group and m denotes the
number of each subtype sample. The score of gene i in
genetic alteration matrix C is defined as

m X
_ i
¢ = zH

=1 x.’/’

()

where X corresponds to gene i in sample j in the
binary matrices. All C, for each gene were given equal
weight. The probability for gene i (p”) was computed as

0 Ci

pi = n .
2..C

On the basis of the genetic alteration matrix with 17,814
genes and 157 samples for subtype 1 and 17,814 genes and

2)

222 samples for subtype 2, we calculated gene i( plo) in

subtypes 1 and 2. Gene scores greater than or equal to
2 x 10* were considered. After filtration, 458 and 666
altered genes were selected for subtypes 1 and 2,
respectively. Then these altered genes were imported into
NetBox and used for module detection.
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Subtype identification

We applied the SNF [9] algorithm for a joint analysis
of gene mRNA expression (12,042 genes) and miRNA
expression (534 miRNAs) on a subset of 379 ovarian
cancers. The main procedure of the subtype identification
contains two parts.

Similarity network fusion

We constructed a graph G = (7, E) that represents
a patient similarity network for each of the two available
datasets. The vertices V' correspond to the patients, whereas
the edges E are weighted by the similarity between the
patients. A weight matrix W represents all edges, with
Wi, j) indicating the similarity between patients 7 and ;.
The weight matrix W was defined as:

p*(x, x,)

HE; ;

W(i, j)=exp| — (3)

where u is a hyperparameter that can be empirically
set, p(x,, x/.) is the Euclidean distance between i and j, and
g . is the means to eliminate the scaling problem. Here,
we defined € as

. - mean (p(xi,Ni))+mean(p(xj,Nj))+p(xi,xj)’

i “)
-] 3

where mean (p(X,, V) is the average value of the distance
between x, and its neighbors.

After defining a weight matrix, a normalized weight
matrix P was acquired as follows:

W, j) .
~ . ,]7&1
PG, )= 22MW(1, k)
1/2,j=i

®)

The normalization is free of the scale of self-
similarity in the diagonal entries and avoids numerical
instability.

To measure the local affinity of a node i to all its
neighbors N, k-nearest neighbors method was used:

ACT). jen,
> W(ik)
SG =17 - ©)

0 ,otherwise

S only retained the k-nearest neighbors for each
patient and filtered out low-similarity edges.

The similarity matrices P*” and S were calculated
from the dataset v. SNF iterated each dataset’s similarity
matrix and was defined as

PO = g0y Zf«c—up
m—1

This procedure updates the matrices P each time,
meanwhile, it generates m parallel interchanging diffusion
procession in m networks. If vertices i and j are similar in
all of the data types, then their similarity will be improved
through diffusion and vice versa.

Spectral clustering (ovarian cancer subtyping)

To identify C cluster samples (each cluster represents
a subtype), we defined a label indicator vector y, If patient
i belongs to the kth subtype, we define the y, (k) = 0;
otherwise, y, (k) = 1. Thus a partition matrix Y = (", y,,....
»,!) delineates a clustering scheme.

We clustered the patient samples in the fused
similarity matrix L*= I-D"> WD™'? by using spectral
clustering. The normalized Laplacian matrix was with the
final similarity matrix P, and the network degree matrix
D was with the scaled partition matrix Q = Y(YTY) "2
The spectral clustering plans to minimize the objective
function were as follows:

minQeR n x cTrace (QTL+Q) s.t.QTQ =1 (8)

Identification of core modules in ovarian cancer
subtypes

The construction of subtype-specific network
modules in NetBox [6] allows us to explore the functional
relevance of genes in a defined network. NetBox was
used to explore the subtype-specific modules in a defined
literature curated human interaction network. Once the
altered gene in each of subtypes which altered by copy
number alternation were inputted into Netbox, module
detection is automatically. (NetBox was used to explore
the subtype-specific modules in a defined literature
curated human interaction network.) Genes in the detected
modules have a potential to be driver genes. 458 and 666
altered genes were imported into NetBox, respectively.
Using the global null model and local null module in
NetBox, the level of connectivity seen within the subtype-
specific modules were assessed.

NetBox identifies the intermediate genes (linker
genes) for the connection of input genes through
subnetwork extraction. Before running NetBox, we set
the neighbor nodes of degree to 2, allowing the linker
gene to connect two altered genes within the network. To
identify significant linker genes in statistics, we adjusted
the p-value using Benjamini—Hochberg [52] and set the
threshold at 0.035 for subtype 1 and 0.0125 for subtype 2.
We ran 1000 iterations to evaluate the level of global
network connectivity in the ovarian cancer subtypes. We
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randomly selected the same number of altered genes in
each iteration and connected them via the original shortest
path threshold and p-value cut-off parameters.

Network visualization and module analysis

Networks were visualized in Cytoscape [53], and
modules were visualized across the two subtypes in
ovarian cancer. The correlation coefficient between CNA
and mRNA expression was calculated via analysis of
variance in R version 2.7.2.

Statistical analysis

Statistical calculation was performed in R version
2.7.2. To analyze the survival of patients, log rank p-values
were computed using the R package “survival.” The
Wilcoxon—Wilcox test was used to analyze the miRNAs
between the two subtypes.

GO analysis

We performed the functional analysis on DAVID
[45] online service to evaluate the function of each driver
gene set in subtypes.
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