Research Papers:
Disruption and inactivation of the PP2A complex promotes the proliferation and angiogenesis of hemangioma endothelial cells through activating AKT and ERK
PDF | HTML | Supplementary Files | How to cite
Metrics: PDF 1764 views | HTML 2419 views | ?
Abstract
Furong Xie1, Xin Bao1, Jingshuang Yu1, Wantao Chen1, Lizhen Wang2, Zhiyuan Zhang1, Qin Xu1
1Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
2Department of Oral Pathology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
Correspondence to:
Zhiyuan Zhang, e-mail: [email protected]
Qin Xu, e-mail: [email protected]
Keywords: hemangioma, PP2A, middle T antigen, endothelial cell
Received: April 16, 2015 Accepted: July 15, 2015 Published: July 27, 2015
ABSTRACT
Hemangioma is a benign vascular neoplasm of unknown etiology. In this study, we generated an endothelial-specific PyMT gene-expressing transgenic mouse model that spontaneously develops hemangioma. Based on this transgenic model, a specific binding between PyMT and the core AC dimer of protein phosphatase 2A (PP2A) was verified in hemangioma vascular endothelial cells. The binding between PyMT and the PP2A AC dimer resulted in dissociation of the B subunit from the PP2A complex and inactivation of PP2A phosphatases, which in turn activated AKT and ERK signaling and promoted cell proliferation, migration and angiogenesis in vitro and tumorigenesis in vivo. Consistent with the in vitro findings, decreased PP2A phosphatase activity and disruption of the PP2A heterotrimeric complex were also observed in both primary transgene-positive TG(+) mouse hemangioma endothelial cells (TG(+) HEC cells) and human proliferating phase hemangioma endothelial (human HEC-P) cells, but not in transgene-negative TG(−) mouse normal vascular endothelial cells (TG(−) NEC cells) and human involuting phase hemangioma endothelial (human HEC-I) cells. Further, it was observed that in human hemangioma cells, endoglin could compete with the PP2A/A, C subunits for binding to the PP2A/B subunit, thereby resulting in dissociation of the B subunit from the PP2A complex. Treatment of Tie2/PyMT transgenic mice with the PP2A activator FTY720 significantly delayed the occurrence of hemangioma. Our data provide evidence of a previously unreported anti-proliferation and anti-angiogenesis effect of PP2A in vascular endothelial cells, and show the therapeutic value of PP2A activators in hemangioma.
All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 4705