Research Papers:
Repairing of N-mustard derivative BO-1055 induced DNA damage requires NER, HR, and MGMT-dependent DNA repair mechanisms
PDF | HTML | Supplementary Files | How to cite
Metrics: PDF 1587 views | HTML 1911 views | ?
Abstract
Ching-Ying Kuo1,*, Wen-Cheng Chou2,*, Chin-Chung Wu1, Teng-Song Wong1, Rajesh Kakadiya2, Te-Chang Lee2, Tsann-Long Su2, Hui-Chun Wang1,3,4,5
1Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
2Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
3PhD Program in Translational Medicine, College of Medicine/PhD Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
4Translational Research Center and Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
5Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
*These authors have contributed equally to this work
Correspondence to:
Hui-Chun Wang, e-mail: [email protected]
Tsann-Long Su, e-mail: [email protected]
Keywords: DNA repair, checkpoint, alkylation agents, DSBR, NER
Received: February 24, 2015 Accepted: July 06, 2015 Published: July 17, 2015
ABSTRACT
Alkylating agents are frequently used as first-line chemotherapeutics for various newly diagnosed cancers. Disruption of genome integrity by such agents can lead to cell lethality if DNA lesions are not removed. Several DNA repair mechanisms participate in the recovery of mono- or bi-functional DNA alkylation. Thus, DNA repair capacity is correlated with the therapeutic response. Here, we assessed the function of novel water-soluble N-mustard BO-1055 (ureidomustin) in DNA damage response and repair mechanisms. As expected, BO-1055 induces ATM and ATR-mediated DNA damage response cascades, including downstream Chk1/Chk2 phosphorylation, S/G2 cell-cycle arrest, and cell death. Further investigation revealed that cell survival sensitivity to BO-1055 is comparable to that of mitomycin C. Both compounds require nucleotide excision repair and homologous recombination, but not non-homologous end-joining, to repair conventional cross-linking DNA damage. Interestingly and unlike mitomycin C and melphalan, MGMT activity was also observed in BO-1055 damage repair systems, which reflects the occurrence of O-alkyl DNA lesions. Combined treatment with ATM/ATR kinase inhibitors significantly increases BO-1055 sensitivity. Our study pinpoints that BO-1055 can be used for treating tumors that with deficient NER, HR, and MGMT DNA repair genes, or for synergistic therapy in tumors that DNA damage response have been suppressed.
All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 4514