Research Papers:
PARP targeting counteracts gliomagenesis through induction of mitotic catastrophe and aggravation of deficiency in homologous recombination in PTEN-mutant glioma
PDF | HTML | Supplementary Files | How to cite
Metrics: PDF 3805 views | HTML 4722 views | ?
Abstract
Jara Majuelos-Melguizo1, María Isabel Rodríguez1, Laura López-Jiménez1, Jose M. Rodríguez-Vargas1, Juan M. Martí Martín-Consuegra1, Santiago Serrano-Sáenz1, Julie Gavard3, J. Mariano Ruiz de Almodóvar2 and F. Javier Oliver1
1 Instituto de Parasitología y Biomedicina López Neyra, CSIC, Granada, Spain
2 IBIMER, Centro de Investigación Biomédica, Universidad de Granada, Spain
3 CNRS, UMR8104, Paris, France
Correspondence:
F. Javier Oliver, email:
Keywords: BUBR1, Mitotic catastrophe, Glioblastoma, Homologous recombination, PARP1, PTEN, genomic instability, EGFR
Received: August 18, 2014 Accepted: December 10, 2014 Published: December 11, 2014
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain tumour in adults and one of the most aggressive cancers. PARP-1 is a nuclear protein involved in multiple facets of DNA repair and transcriptional regulation. In this study we dissected the action of PARP inhibition in different GBM cell lines with either functional or mutated PTEN that confers resistance to diverse therapies. In PTEN mutant cells, PARP inhibition induced a severe genomic instability, exacerbated homologous recombination repair (HR) deficiency and down-regulated the Spindle Assembly Checkpoint (SAC) factor BUBR1, leading to mitotic catastrophe (MC). EGFR gene amplification also represents a signature of genetic abnormality in GBM. To more effectively target GBM cells, co-treatment with a PARP inhibitor and an EGFR blocker, erlotinib, resulted in a strong suppression of ERK1/2 activation and in vivo the combined effect elicited a robust reduction in tumour development. In conclusion, PARP inhibition targets PTEN-deficient GBM cells through accentuation of SAC repression and aggravation of HR deficiency, leading to the induction of genomic instability and eventually deriving to mitotic catastrophe (MC); the inhibition of PARP and co-treatment with an inhibitor of pro-survival pathways strongly retarded in vivo gliomagenesis.
All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 2993