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ABSTRACT
Primary sclerosing cholangitis (PSC) is a chronic liver disease characterized by 

inflammation and scarring of the bile ducts, which can lead to cirrhosis and hepatic 
decompensation. The study aimed to explore the potential value of computational 
radiomics, a field that extracts quantitative features from medical images, in 
predicting whether or not PSC patients had hepatic decompensation. We used an 
in-house developed deep learning model called the body composition model, which 
quantifies body composition from computed tomography (CT) into four compartments: 
subcutaneous adipose tissue (SAT), skeletal muscle (SKM), visceral adipose tissue 
(VAT), and intermuscular adipose tissue (IMAT). We extracted radiomics features 
from all four body composition compartments and used them to build a predictive 
model in the training cohort. The predictive model demonstrated good performance 
in validation cohorts for predicting hepatic decompensation, with an accuracy score 
of 0.97, a precision score of 1.0, and an area under the curve (AUC) score of 0.97. 
Computational radiomics using CT images shows promise in predicting hepatic 
decompensation in primary sclerosing cholangitis patients. Our model achieved 
high accuracy, but predicting future events remains challenging. Further research is 
needed to validate clinical utility and limitations.

INTRODUCTION

Primary Sclerosing Cholangitis (PSC) is a chronic 
cholestatic liver disorder characterized by inflammation 
and fibrosis of the extra and/or intrahepatic bile ducts, 
which can lead to cirrhosis and complications stemming 
from portal hypertension [1, 2]. Hepatic decompensation 
refers to the development of serious complications in 
patients with advanced liver disease, including ascites, 
variceal bleeding, hepatic encephalopathy, or jaundice. 
Early detection of hepatic decompensation plays a vital 
role in facilitating prompt therapeutic interventions, 
which can enhance clinical outcomes and optimize 
treatment strategies. Biomarkers to predict clinically 
significant events are important, as this allows for the risk 
stratification of patients in clinical practice and in clinical 
trials. However, there is not yet a reliable way for early 

identification of which patients with PSC will experience 
hepatic decompensation. Body composition has been 
used to predict outcomes in other chronic diseases, such 
as cancer and cardiovascular disease [3, 4]. Our research 
implements an in-house-developed deep learning approach 
for quantitative body composition analysis. This model 
performs comprehensive tissue segmentation, specifically 
identifying and measuring subcutaneous adipose tissue 
(SAT), skeletal muscle (SKM), visceral adipose tissue 
(VAT), and intermuscular adipose tissue (IMAT). The 
segmentation framework employs a convolutional 
neural network utilizing the U-Net architecture, which 
was trained using a substantial dataset comprising 
2,430 two-dimensional Computed Tomography (CT) 
abdominal scans. Body composition analysis quantifies 
the distribution patterns of muscular and adipose tissues 
throughout the body, providing valuable insights into 
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various pathological conditions including cancer and 
cardiovascular disorders that correlate with patient 
outcomes [3–5].

The low density (Hounsfield unit) range of adipose 
tissue makes it easier to distinguish from other tissues. 
The subcutaneous adipose tissue and bone compartment 
had the highest Dice and Jaccard scores, while the visceral 
adipose tissue had the lowest. The visceral adipose 
tissue compartment had more variability than the other 
compartments.

Radiomics include multiple classes of quantitative 
imaging characteristics that each captures a different 
property in a region of interest (ROI). First-order, for 
example, intensity, and second-order statistical features, 
such as texture, contrast, and homogeneity, are the most 
common radiological features. The former is calculated 
using the histogram of grey-level pixels, irrespective of 
spatial relationships among the pixels. The ROI shapes and 
edge detection capabilities underlying object boundaries 
include morphological functions in other radiomic 
features [6–9]. We developed a method using Computed 
Tomography-Based Radiomics Signature and the Body 
Composition Model to predict hepatic decompensation, 
given this promising technique and the unmet need to 
better predict unfavorable outcomes in those with PSC.

RESULTS

In predicting hepatic decompensation for PSC 
patients, the computational model achieved favorable 
performance metrics. The model utilized a combination of 
CT-based radiomics signature and a deep learning-based 
body composition model. It was trained on a dataset of 
80 patients, including 30 with hepatic decompensation, 30 
without decompensation, and 20 in an external validation 
set. The model’s performance was evaluated using the 
area under the receiver operating characteristic curve 
(AUC), a metric that quantifies the prediction performance 
of a binary classifier. Notably, the model achieved an 
impressive AUC of 0.97 on the validation set, indicating 
its exceptional ability to discriminate between patients 
who would experience hepatic decompensation and those 
who would not. Furthermore, the model demonstrated a 
prediction accuracy of 97% on the validation set, which 
represents the percentage of correct classifications made 
by the model (Table 1). This high accuracy highlights the 

model’s potential for accurately identifying patients at 
risk of hepatic decompensation, enabling timely clinical 
interventions and personalized treatment strategies.

DISCUSSION

We have developed a novel method that predicts 
hepatic decompensation in patients with PSC by 
combining CT-Based Radiomics Signature and a Body 
Composition Model. This approach leverages the power of 
advanced imaging analysis techniques to extract valuable 
information from a vast amount of imaging data, enabling 
accurate classification of hepatic decompensation in PSC 
patients.

Our study represents a pioneering proof-of-concept 
application that integrates radiomics signatures and body 
composition analysis from CT scans. The proposed model 
was designed to predict short-term outcomes, serving as 
a crucial first step in this innovative approach. However, 
further research is necessary to validate our findings on a 
large-scale, independent dataset, ensuring the robustness 
and generalizability of the model.

The potential applications of this methodological 
approach extend beyond the current scope. It may 
hold promise for the detection of other PSC-related 
complications, such as cholangiocarcinoma, as well as 
applications in more prevalent chronic liver diseases 
like non-alcoholic fatty liver disease (NAFLD) [10, 
11]. By harnessing the wealth of information contained 
within imaging data, our approach could pave the way 
for improved risk stratification, personalized treatment 
strategies, and ultimately, better patient outcomes.

It is crucial to note that this study represents an 
initial step. Given its small sample size and single-
center design, further investigations are needed to refine 
and validate the proposed model. Nonetheless, the 
integration of radiomics signatures and body composition 
analysis presents an exciting avenue for advancing our 
understanding and management of PSC and other chronic 
liver diseases.

We have demonstrated a set of imaging biomarkers 
extracted from a body composition model with 
PyRadiomics from CT scans. This study reveals the 
potential for prognostic features in predicting hepatic 
decompensation in patients with PSC. It provides 
hidden information that will aid in the discovery of new 

Table 1: Predicted values for metrics obtained during a 5-fold stratified cross-validation evaluation 
of the random forest classifier in the validation cohort
Metric Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
Accuracy score 0.94 0.94 0.87 1.0 0.98
Precision-score 0.89 0.94 0.83 1.0 1.0
Recall Score 1.0 0.93 0.93 1.0 0.94
AUC score 0.94 0.94 0.87 1.0 0.97
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differentiating imaging features, paving the way for 
improved risk stratification and personalized treatment 
strategies for PSC and other chronic liver diseases.

MATERIALS AND METHODS

Our study protocol received approval from Mayo 
Clinic’s Institutional Review Board (IRB) (18-009852) 
in Rochester, MN, and adhered to the 1975 Declaration 
of Helsinki’s ethical standards, with informed consent 
obtained from all participants. Study enrollment required 
both a confirmed PSC diagnosis and portal venous 
phase abdominal CT imaging. The imaging protocol 
standardized contrast administration (2–3 ml/sec, weight-
based) with consistent portal venous phase timing 
(70-second delay). The final cohort included 80 subjects 
distributed across three groups: 30 patients with previous 
hepatic decompensation, 30 without decompensation 
history, and 20 patients allocated for external validation 
within a 5-fold cross-validation framework. This was a 
retrospective cohort study with CT studies obtained from 
1993 to 2021. The study excluded patients with prior or 
concurrent hepatic decompensation events, diagnosed 
cholangiocarcinoma, or previous liver transplantation 
relative to their CT examination date. Following the 
baseline CT scan, patients underwent monitoring until 
they experienced hepatic decompensation, underwent 

liver transplantation, or reached their last follow-up 
appointment. The surveillance duration had a median of 
1.5 years (range: 142–1, 318 days).

Body composition model

This is a U-Net model developed in-house that 
assesses body composition using the metrics SAT, SKM, 
VAT, and IMAT (Figure 1). The idea of “body composition” 
describes how the distribution of muscle and fat in the body 
varies in situations like cancer and chronic diseases, which 
are associated with clinical outcomes [4, 5]. This advanced 
model utilizes deep learning techniques to accurately 
quantify these tissue compartments from CT images, 
providing a comprehensive analysis of an individual’s 
body composition. By offering detailed insights into the 
proportions and distributions of these key tissue types, the 
model enables clinicians to better understand a patient’s 
metabolic health, assess disease risk, and potentially predict 
treatment outcomes. This non-invasive approach to body 
composition analysis represents a significant advancement 
in personalized medicine and risk stratification.

Feature extraction

We used the PyRadiomics library, an open-source 
Python package, to extract radiomic features on the 

Figure 1: Workflow of the prediction of primary sclerosis cholangitis using computed tomography-based radiomics 
signature and the body composition model.
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ROI which is created by the body composition model. 
We included descriptors for the ROI’s two-dimensional 
size and shape. Because these features are independent 
of the ROI’s gray level intensity distribution, they can 
only be calculated on the non-derived image and mask. 
This class can only be calculated for truly 2D masks. 
Force2Ddimension must be set to the dimension that is out 
of plane (e.g., 0 (z-axis) for an axial slice) to ensure proper 
processing. Statistical analysis utilizing t-test methodology 
revealed 23 significant radiomics features from a 
comprehensive set of 100 features, as referenced in the 
PyRadiomics documentation portal (https://pyradiomics.
readthedocs.io/en/latest/features.html) [9].

Machine learning model

We aimed at developing a classification model 
using radiomics features based upon a traditional machine 
learning approach (random forest classification). The 
random forest produces several decision trees by selecting 
random subsets of features to classify all smaller trees 
according to the mode (for classification) or the average 
(for regression). The extracted features served as input for 
our classifier. We used scikit-learn (version 0.24.2) to train 
class sklearn.ensemble: RandomForestClassifier and used 
default parameters except for max leaf nodes.

Abbreviations

PSC: Primary sclerosing cholangitis; CT: 
computed tomography; AUC: area under the curve; SAT: 
subcutaneous adipose tissue; SKM: skeletal muscle; VAT: 
visceral adipose tissue; IMAT: intermuscular adipose 
tissue; ROI: region of interest.
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