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Editorial

Persistence landscapes: Charting a path to unbiased radiological 
interpretation

Yashbir Singh, Colleen Farrelly, Quincy A. Hathaway and Gunnar Carlsson

ABSTRACT
Persistence landscapes, a sophisticated tool from topological data analysis, 

offer a promising approach to address biases in radiological interpretation and AI 
model development. By transforming complex topological features into statistically 
analyzable functions, they enable robust comparisons between populations and 
datasets. Persistence landscapes excel in noise filtration, fusion bias mitigation, 
and enhancing machine learning models. Despite challenges in computation and 
integration, they show potential to improve the accuracy and equity of radiological 
analysis, particularly in multi-modal imaging and AI-assisted interpretation.

INTRODUCTION

In the ever-evolving field of medical imaging, the 
pursuit of unbiased and accurate interpretation remains 
a paramount challenge. As we continue to leverage 
advanced technologies and artificial intelligence (AI) in 
radiology, a novel approach from topological data analysis 
(TDA) has emerged as a promising tool: persistence 
landscapes. This sophisticated statistical method for 
summarizing topological features offers new avenues 
for addressing biases and enhancing the reliability of 
radiological interpretations.

Understanding persistence landscapes

Persistence landscapes, introduced by Bubenik in 
2015 [1], are a statistical tool derived from persistence 
images, which are fundamental in TDA. While persistence 
images capture the birth and death of topological features 
across different scales, persistence landscapes transform 
this information into a sequence of real-valued functions. 
This transformation preserves the topological information 
while providing a format more amenable to statistical 
analysis [2]. The key advantage of persistence landscapes 
lies in their ability to represent complex topological 
information in a way that allows for the application of 
traditional statistical methods. This property makes them 
particularly valuable in medical imaging, where we often 
need to compare different populations or datasets to 
identify patterns or biases [3].

Comparing populations and datasets in radiology

One of the most promising applications of 
persistence landscapes in radiology is their potential 
to reveal demographic or equipment-related biases. 

By generating persistence landscapes for different 
subsets of radiological data – such as images from 
different demographic groups or acquired with different 
equipment – we can perform statistical comparisons 
that may uncover subtle but significant differences [4]. 
For instance, persistence landscapes could be used to 
compare the topological features of brain MRI scans 
across different age groups or ethnicities. Any systematic 
differences in these landscapes might indicate potential 
biases in image acquisition or interpretation that need to 
be addressed [5].

Filtration of noise

One of the inherent strengths of persistence 
landscapes is their ability to filter out noise while 
preserving meaningful topological features. This property 
is particularly valuable in radiological imaging, where 
image artifacts and noise can significantly impact 
interpretation [6]. The multi-scale nature of persistence 
landscapes allows them to capture features that persist 
across different scales, effectively distinguishing between 
genuine anatomical structures and transient noise. This 
filtration effect can lead to more reliable and less biased 
interpretations of complex imaging data [7].

Fusion bias mitigation

In the era of multi-modal imaging, where we often 
combine data from different imaging modalities (e.g., 
PET/CT, PET/MRI), persistence landscapes offer a 
unique approach to mitigate fusion bias. By generating 
persistence landscapes for each modality separately and 
then comparing or combining them, we can identify 
discrepancies or biases that might arise from the fusion 
process [8]. This approach could provide superior 
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integration of multiple imaging modalities, enhancing 
diagnostic accuracy without introducing new biases or 
artifacts. It provides a topological perspective on data 
fusion that complements traditional image registration and 
fusion techniques [9].

Statistical soundness of comparison tests

One of the key advantages of persistence landscapes 
is the statistical soundness they bring to comparison tests. 
Unlike some other topological summaries, persistence 
landscapes live in a vector space, allowing for the 
application of a wide range of statistical tests and machine 
learning techniques [10]. This property enables rigorous 
statistical comparisons between different groups of 
images or between human and AI interpretations. For 
example, we can use standard statistical tests to determine 
if the differences in persistence landscapes between two 
populations are statistically significant, providing a solid 
foundation for identifying potential biases [11].

Avoiding machine learning biases

As we increasingly rely on machine learning (ML) 
in radiological interpretation, persistence landscapes offer 
a way to mitigate some common ML biases:

1. Cycling Behavior in Boosting: Boosting algorithms 
can sometimes exhibit cycling behavior, repeatedly 
misclassifying the same examples. Persistence 
landscapes, by providing a stable topological summary 
of the data, can help identify and mitigate this issue by 
offering a consistent representation of the underlying 
structure [12].

2. Smoothing in Deep Learning: Deep learning models 
often struggle with preserving fine details due to their 
smoothing effect. Persistence landscapes, by capturing 
multi-scale topological features, can complement 
deep learning approaches and help preserve important 
structural details that might otherwise be lost [13].

3. Sampling Bias in Decision Trees: Decision trees are 
susceptible to sampling bias, potentially leading to 
overfitting. Persistence landscapes can provide a more 
robust representation of the data’s topology, helping to 
guide the tree-building process and reduce the impact 
of sampling artifacts [14].

By incorporating persistence landscapes into ML 
pipelines, we can develop more robust and unbiased 
models for radiological interpretation. This topological 
perspective can complement traditional feature 
engineering approaches and help uncover subtle structural 
patterns that might be missed by conventional ML 
techniques [15].

Challenges and future directions

While persistence landscapes offer significant 
promise in addressing biases in radiological interpretation, 
several challenges remain:

1. Computational Complexity: Generating persistence 
landscapes for large-scale radiological datasets can be 
computationally intensive. Developing more efficient 
algorithms and leveraging high-performance computing 
resources will be crucial for widespread adoption [16].

2. Interpretability: While persistence landscapes provide 
a statistically sound representation of topological 
features, interpreting these landscapes in the context 
of specific radiological findings can be challenging. 
Developing intuitive visualization tools and training 
programs will be essential to bridge this gap [17].

3. Integration with Existing Workflows: Incorporating 
persistence landscape analysis into established 
radiological workflows will require careful planning 
and validation. Demonstrating the added value of this 
approach in real-world clinical settings will be crucial 
for adoption [18].

CONCLUSIONS

Persistence landscapes represent a powerful new tool 
in our ongoing efforts to achieve unbiased and accurate 
radiological interpretation. By providing a statistically sound 
method for summarizing and comparing topological features 
in medical images, they offer unique insights that can 
complement existing analytical approaches. As we continue 
to refine and validate this technique, persistence landscapes 
have the potential to play a crucial role in identifying and 
mitigating biases in radiological practice, whether these 
biases stem from demographic factors, equipment variations, 
or the limitations of AI algorithms. The path to truly unbiased 
radiological interpretation is complex, but with innovative 
approaches like persistence landscapes, we are equipping 
ourselves with sophisticated tools to navigate this challenge. 
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