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ABSTRACT
Lifelong hematopoiesis is sustained by crosstalk between hematopoietic stem and 

progenitor cells (HSPCs) and specialized bone marrow niches. Acute myeloid leukemia 
(AML) upends that balance, as leukemic blasts secrete factors that remodel the bone 
marrow into a self-reinforcing leukemic niche. The inflammatory secretome behind this 
compartmental adaptation accounts for a progressive decline in hematopoietic function 
that leads to diagnosis and persists through early treatment. Not surprisingly, the 
mediators of an acute inflammatory injury and HSPC suppression have attracted much 
attention in an effort to alleviate morbidity and improve outcomes. HSPCs typically 
recover during disease remission and re-expand in the bone marrow (BM), but little 
is known about potentially lasting consequences for stem cells and progenitors. We 
recently showed that AML-experienced HSPCs actively participate in the inflammatory 
process during leukemic progression. HSPCs are constituent components of the innate 
immune system, and elegant studies of infection and experimental inflammation over 
the past decade have described the generation of an adoptively transferable, innate 
immune memory. Building on this paradigm, we discuss the potential translational 
relevance of a durable legacy in AML-experienced HSPC.

INTRODUCTION

Acute myeloid leukemia (AML) is a heterogenous 
disease emerging from mutations in hematopoietic stem 
and progenitor cells (HSPCs) in the bone marrow (BM). 
As disease progresses, crosstalk between the malignant 
clones and other cells in the BM microenvironment 
shapes disease pathogenesis. Inflammation, an enabling 
characteristic and emerging hallmark of cancer [1], has 
been implicated in various hematologic malignancies, 
including AML, and a recent study suggests a positive 
correlation with severity and patient prognosis [2]. 
Evidently, a better understanding of the role inflammation 
plays in AML and how it impacts the BM niche is 
imperative. As disease progresses, AML blasts [3] and 

stromal cells [4, 5] are typically considered the two 
predominant pro-inflammatory cytokine-producing cell 
populations in the leukemic niche. Healthy HSPCs have 
been conventionally viewed as bystanders and targets of 
functional suppression [6]. In this research perspective, 
we discuss recent work from our lab describing an active 
role of HSPCs in AML and the potential implications [7] 
(Figure 1).

Inflammatory crosstalk between AML blasts and 
healthy HSPCs in the BM

Xenograft leukemia models have proved useful in 
modeling leukemic pathophysiology in vivo. However, 
the extent to which studies in immunodeficient recipients 
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reflect signaling in the human AML niche is likely 
limited [3]. Given this consideration, we recently utilized 
two immune-competent murine models (C1498 [8] 
and iMLL-AF9 [9]), to investigate AML crosstalk in a 
fully functional immune landscape absent in xenograft 
models. Through initial BM plasma cytokine profiling, 
we observed elevated pro-inflammatory cytokines, 
including Cxcl10, in the leukemic BM microenvironment, 
which we validated in human BM plasma from AML 
patient samples. Then, utilizing single-cell RNA-Seq, 
we found that the major BM HSPC subpopulations, 
including long-term hematopoietic stem cells (HSCs), 
express inflammatory gene set signatures even at low BM 
leukemic burden, suggesting the involvement of a potent 
paracrine signaling mechanism [10]. Indeed, we found that 
AML-derived extracellular vesicles (EVAML) accounted 
for inflammatory signals in healthy HSPCs, including 
increased interferon-gamma related signals: interferon-
stimulated gene 15 (Isg15) and C-X-C motif chemokine 
ligand 10 (Cxcl10). The translational relevance of our 
finding was validated ex vivo by subjecting BM human 
CD34 cells to human EVAML (hEVAML) from MOLM-14, 
U937, and HL-60 cell lines, which uniformly elicited 
inflammatory activity. The underlying regulatory cascade 
is likely complex, but appears to involve both mammalian 
target of rapamycin (mTOR) and MYC pathways. While 
the mechanism remains under investigation, the study 
shows for the first time that HSPCs actively participate in 
the inflammatory conversion of the AML niche.

Consequences of inflammatory recruitment of 
HSCs in AML

Inflammation has proved to be a crucial regulator 
of HSCs throughout life. Beginning with embryonic 

development, inflammatory signaling plays an 
important role in HSC emergence from hemogenic 
endothelium [11], specification of definitive HSCs and 
perinatal phenotype transition [12]. Throughout adult 
life, inflammation regulates stem cell self-renewal 
and differentiation to support multi-lineage blood cell 
production during homeostasis [13] and in responding 
to injury [14]. However, while inflammation is vital 
for stem and progenitor cells to maintain hematopoietic 
health, persistent inflammatory conditions are detrimental. 
For example, rheumatoid arthritis [15], lupus [16], 
periodontitis [17] and atherosclerosis[18] all trigger 
stem cell cycling, promote myeloid-bias and boost 
cytokine output that fuels disease progression. In other 
words, inflammation is a self-limiting protective tissue 
response, but when it persists, HSC function capacity is 
compromised [19, 20].

Like the above debilitating chronic disorders, 
hematologic malignancies are also inherently 
inflammatory. Systemically and locally, cancer 
associated inflammation amplifies the fitness advantage 
of some malignant clones over others, contributes to 
chemotherapy resistance [21], and fuels the pathogenesis 
of myeloproliferative neoplasms [22] and AML [23]. 
Sustained inflammation can also lead to genetic instability 
and promote selection and expansion of clones defined 
by recurring genetic lesions (e.g. DNMT3A, TET2, 
ASXL1 and others). Clonal hematopoiesis (CH) denotes 
an increased risk of systemic inflammatory sequelae and 
progression to hematological malignancies [24]. 

Several recent studies report that inflammation-
experienced HSPCs can be imprinted with a durable 
memory of inflammation through a mechanism termed 
trained immunity. Models of experimental infection, 
vaccination or sterile inflammation indicate that these 

Figure 1: HSPCs exhibit an inflammatory active state in the AML niche. Illustration created using BioRender.
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inflammation-experienced HSPCs exhibit amplified 
responses to subsequent inflammatory activation [25]. 
Such an innate immune memory may aggravate disease 
manifestations of periodontitis [26] and atherosclerosis 
[27], and has been linked with CH in HSPCs [28].

Considering the abundant evidence for AML 
associated inflammation, and the involvement of healthy 

HSPCs discussed in our study, the question arises whether 
sterile cancer-associated inflammation also has long-term 
functional consequences. More specifically, does sterile 
inflammation in the AML BM reprogram residual healthy 
HSPCs for aggravated recall responses?

Our preliminary studies in C1498 grafts (Figure 2A) 
indeed suggest that residual healthy AML-experienced 

Figure 2: AML-experienced HSPCs (HSPCAML) acquire a deregulated transcriptome. (A) Schematic of the experimental 
workflow involving adoptive transfer of FACS-purified HSPCAML (Lin- cKit+ Sca1+) into conditioned C57BL/6J recipients. LSKs from PBS-
injected mice serve as control (HSPCNaive). After 16 weeks, HSPCs were analyzed at baseline and in response to inflammatory challenge 
(LPS) using RNA-Seq. (B) Gene set enrichment analysis of HSPCAML transcriptome at baseline shows highly enriched dysregulated 
inflammation-related pathways. (C) In response to an LPS challenge, HSPCAML showed enhanced transcriptional activity. (D) Correlative 
RNA-Seq/ATAC-Seq analysis of AML-experienced, LPS-challenged HSPCs shows that 183 differentially gene expressed are also 
differentially accessible, with majority of these genes transcriptionally upregulated (E).
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HSPCs (HSPCAML) develop a memory of sterile 
inflammation. Specifically, our transcriptomic data from 
C1498- experienced HSPCAML showed differences in gene 
expression compared to naïve HSPCs that persisted 16 
weeks after adoptive transfer to a leukemia-free niche. Gene 
set enrichment studies showed dysregulated inflammatory 
programs and metabolic pathway changes (Figure 2B), 
both defining traits of an immune memory [25]. AML 
experienced HSPCs also showed an aggravated response to 
an LPS-challenge, another characteristic of trained immunity 
(Figure 2C). Finally, preliminary correlative transcriptomic 
and chromatin accessibility (ATAC-Seq) analysis of LPS-
challenged HSPCAML, identified 183 differentially expressed 
genes that also showed differential chromatin accessibility, 
suggesting a potential epigenetic imprint of AML exposure 
(Figure 2D, 2E). While further investigation is needed, our 
preliminary observations reveal aspects of innate immune 
reprogramming that raise further questions on whether 
AML-experienced HSPCs: 1) accelerate clonal selection 
and evolution of CH, 2) support the emergence of resistant 
MRD clones and relapse or 3) dysregulate the adaptive 
immune landscape. Clearly, a better understanding of a 
durable inflammatory legacy and the long-term functional 
consequences for AML patients in remission is needed.
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