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ABSTRACT
WNT signaling regulates osteosarcoma proliferation. However, there is 

controversy in the field of osteosarcoma as to whether WNT signaling is pro- or anti-
tumorigenic. WNT-targeting therapeutics, both activators and inhibitors, are compared. 
WNT5B, a β-catenin-independent ligand, and WNT10B, a β-catenin-dependent WNT 
ligand, are each expressed in osteosarcomas, but they are not expressed in the same 
tumors. Furthermore, WNT10B and WNT5B regulate different histological subtypes 
of osteosarcomas. Using WNT signaling modulators as therapeutics may depend on 
the WNT ligand and/or the activated signaling pathway.

OSTEOSARCOMA

Osteosarcoma is a type of bone cancer that affects 
about 400 children and young adults each year in the 
United States [1]. Patients are treated with chemotherapy 
and surgery, as there currently are no targeted therapies. 
The 5-year survival for localized disease is 76%, but only 
24% for metastatic osteosarcoma. Therefore, the biology 
of osteosarcoma is actively being investigated to identify 
novel therapeutics.

WNT SIGNALING

Abnormal WNT signaling has been implicated in 
driving proliferation and/or stem cell growth in many 
cancer types, including osteosarcoma [2, 3]. Some WNT 
ligands, including -1, -3A, and -10B are often referred to 
as activators of β-catenin-dependent gene transcription 
(or “canonical WNT signaling”) (Figure 1). Canonical 
WNT ligands bind to the receptors LRP5/6 and a FZD 
coreceptor to initiate WNT signaling. The signaling 
output of the canonical WNT pathway is determined 
by the level of nuclear, activated β-catenin, which is 
under the strict control of the “destruction complex”. 
The core “destruction complex” is composed of AXIN, 
APC, and two constitutive active kinases (CK1α/δ and 

GSK3α/β), which associate with β-catenin and promote 
its polyubiquitination and proteasomal degradation 
by phosphorylating the degron motif of β-catenin. 
In the presence of a WNT ligand, the inactivated 
deconstruction complex releases β-catenin from 
proteasomal degradation, thereby causing cytoplasmic 
accumulation and nuclear translocation to control gene 
expression [4].

In contrast, β-catenin-independent (“non-canonical 
WNT signaling”) gene transcription-mediated WNT-
ligands (e.g., -5A and -5B) transduce through ROR1, 
ROR2, and/or RYK receptors and a FZD co-receptor to 
activate RAC1/2 and/or RHOA kinases to downstream 
effectors such as p38 and JNK, among other pathways [5] 
(Figure 1). The β-catenin-independent pathways induce 
either calcium signaling or the Planar Cell Polarity (PCP) 
pathway. WNT/Ca2+ signaling leads to cellular migration 
and cytoskeletal changes and the activation of WNT/
PCP signaling results in cell polarity, cell migration, and 
convergent extension.

WNTs AND STEM CELLS

WNT signaling has been shown to regulate the self-
renewal and differentiation of many types of stem cells 
[6]. Importantly for osteosarcoma, WNT signaling directs 
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the differentiation and lineage specification of osteoblasts 
from mesenchymal stem cells [7]. WNT signaling also 
regulates cancer stem cells (reviewed in references [8, 9]), 
including in osteosarcoma [10].

WNTs IN OSTEOSARCOMAS

Perkins, et al., analyzed RNA-sequencing of 107 
osteosarcoma patient samples from the St. Jude PeCan 
Data Portal and 97 patient samples from the TARGET 
dataset for the expression of all 19 WNT ligands. The 
two most expressed WNT ligands in each dataset are 
WNT5B and WNT10B, composing ~36% of the total 
samples when combined [10]. WNTs 4, 5A, 7B, 11, and 
16 are each expressed in a small percentage of tumors. 
In contrast, 26–33% of tumors do not express a WNT 
ligand.

There is a controversy in the field of osteosarcoma: 
is WNT signaling pro- or anti-tumorigenic [11]? Are WNT 
inhibitors or activators effective therapeutics? Several 
WNT/β-catenin pathway activators have been shown 
to inhibit osteosarcoma growth [12–14]. Dickkopf-1 
(DKK1) is a canonical WNT signaling antagonist. It is a 
secreted glycoprotein that inhibits the LRP5/6 receptors 
(Figure 1). Treatment with an anti-DKK1 antibody, 
thus activating canonical WNT signaling, was shown to 
inhibit osteosarcoma tumor growth in mouse orthotopic 
models [12]. An anti-DKK1 antibody (αDKN-01) is in 
clinical trials for solid tumors (https://clinicaltrials.gov/ 
ID NCT04681248).

Tideglusib is a small-molecule inhibitor of GSK-
3β, and, thus, activates WNT signaling by inhibiting 
the destruction complex to activate β-catenin nuclear 
translocation (Figure 1). Tideglusib was shown to reduce 

Figure 1: WNT signaling and proposed drug treatments for osteosarcoma. WNT ligands depend on porcupine-mediated 
palmitoylation (palm.) for secretion, which can be blocked by porcupine inhibitors such as CGX1321, RXC004, and ETC-1922159. 
Canonical WNT ligands, such as WNT10B bind to the receptors LRP5/6 and FZD to induce β-catenin stabilization and transcriptional 
activation. Tegavivint and PRI-724 inhibit β-catenin and CBP interaction preventing transcription. Tideglusib and GIN compound 12 
activate GSK-3β leading to β-catenin stabilization and activation. αDKN-01 will block DKK1, thereby activating the canonical pathway. 
Zilovertamab is a monoclonal antibody to ROR1 to inhibit the non-canonical pathway induced by WNT5A and WNT5B. Created in https://
www.biorender.com/.
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proliferation and induce apoptosis in MG63, U2OS, and 
143B osteosarcoma cells in vitro and to decrease tumor 
growth of U2OS cells in mice in vivo [13]. A second 
GSK3β inhibitor (GIN), compound 12 from Lilly Research 
Laboratories, was also shown to inhibit the proliferation of 
MG63 and U2OS cells in vitro [14].

In contrast, several nuclear β-catenin inhibitors 
decrease osteosarcoma tumor growth in preclinical studies. 
Tegavivint and PRI-724 are two small molecules that inhibit 
the transcriptional activation activity of β-catenin (Figure 
1), and both have been shown to decrease osteosarcoma 
proliferation and migration [15, 16]. Tegavivint is in 
clinical trials for solid tumors (ClinicalTrials.gov ID 
NCT04851119). A clinical study of PRI-724 in solid tumors 
was terminated due to low enrollment (NCT01302405).

WNT5B IS EXPRESSED IN 20–39% OF 
OSTEOSARCOMAS

WNT5B is a non-canonical WNT ligand that is 
widely expressed in many tissues, both normal and 
pathogenic [17, 18]. In bone, WNT5B inhibits osteoblast 
differentiation and mineralization [19], while driving 
osteoclast differentiation [20].

In the osteosarcoma PeCan and TARGET 
datasets, WNT5B is expressed in 20 and 24% of tumors, 
respectively. It is surprising that WNT5B is the most 
expressed WNT in osteosarcoma because WNT5B had 
not been previously studied in osteosarcoma, until Perkins 
et al., 2023. High expression of WNT5B is correlated with 
a low probability of survival. Immunohistochemistry 
(IHC) on tumor microarrays (TMAs) demonstrated that 
WNT5B protein was scored at medium or high levels 
in 39% of the 80 samples, consistent with the mRNA 
expression from multiple datasets [10]. 

WNT5B expression is high in osteosarcoma 
stem cells and the addition of recombinant WNT5B 
to sarcospheres in vitro led to increased sphere size 
(an indication of cancer stem cells) and increased 
chemoresistance to methotrexate. Knockout of WNT5B or 
inhibition of WNT5B signaling with a pre-clinical antibody 
to its receptor ROR1 (similar to Zilovertamab) decreased 
the sphere size and chemoresistance to methotrexate. 
Mechanistically, WNT5B led to the upregulation of SOX2, 
a stem cell marker and transcription factor that maintains 
stemness [10]. Future studies should test the inhibition of 
ROR1 in WNT5B-expressing osteosarcomas in vivo using 
Zilovertamab or a similar drug [21].

WNT10B IS EXPRESSED IN 16–18% OF 
OSTEOSARCOMAS

One of the key WNT ligands in normal bone is 
WNT10B [22, 23]. The role of WNT10B in bone in vivo 
has been analyzed using Wnt10b global knockout mice, 

which have a loss of progenitor mesenchymal stem cells 
(MSCs) and loss of bone mass [24]. In vitro addition of 
WNT10B increases osteoblastogenesis of mesenchymal 
precursors [25]. 16–18% of osteosarcoma primary tumors 
express WNT10B [10]. When WNT10B is highly expressed 
in osteosarcomas there is a correlation with worse 
survival outcomes [26]. The mechanism of WNT10B in 
osteosarcomas has not been elucidated.

WNT5B AND WNT10B ARE NOT 
EXPRESSED IN THE SAME 
OSTEOSARCOMA TUMORS

Analysis of 107 samples from the PeCan data portal 
(p < 0.0001), 15 osteosarcoma PDX tumors from St. Jude 
Children’s Research Hospital (p < 0.05, data not shown), 
and 23 osteosarcoma tumors from GEO dataset GSE36004 
[27] (p < 0.02, data not shown) revealed that WNT5B and 
WNT10B are not expressed in the same tumors (Figure 2). 
When either WNT10B or WNT5B are expressed, there 
is an inverse correlation in their expression. Therefore, 
a treatment against WNT10B or WNT5B signaling 
pathways will only work on a subset of cancers because 
they activate different pathways. A β-catenin nuclear 
inhibitor such as PRI-724 or tegavivint would theoretically 
not work on the osteosarcoma tumors that express WNT5A 
or WNT5B (~50% of tumors) or those that do not express 
a WNT ligand (~30% of tumors), and conversely, a ROR1 
inhibitor would not work on osteosarcoma tumors that 
express WNT10B only.

WNT10B AND WNT5B REGULATE 
DIFFERENT HISTOLOGICAL SUBTYPES 
OF OSTEOSARCOMAS

Osteosarcomas can be categorized based on their 
histological subtypes, including osteoblastic, fibroblastic, 
chondroblastic, and others. Perkins, et al. showed that 
WNT5B is more highly expressed in the fibroblastic 
subset of osteosarcoma [10], in comparison to the 
osteoblastic subset. In comparison, WNT10B regulates 
osteoblastic differentiation and is more expressed in the 
osteoblastic subtype of osteosarcoma (Figure 3). We 
identified osteoblast differentiation genes (SP7 (osterix), 
ALPL, BMP4, and PHOSPHO1) in RNA-sequencing of 
osteosarcoma patient tumors and WNT10B correlated 
positively with these genes, while these genes inversely 
correlated with WNT5B (Table 1). Furthermore, we 
have shown that WNT5B inhibits normal osteoblast 
differentiation [19] and it inversely correlates with 
osteoblast differentiation genes in osteosarcomas 
(Table 1 and Figure 3). Instead, WNT5B correlates with 
CD44, a stem cell marker [28], and fibronectin (FN1), 
a fibroblast marker [29].
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Figure 3: WNT5B and WNT10B in normal tissue vs. osteosarcomas. Osteoblasts and adipocytes differentiate from mesenchymal 
stem cells (MSCs). WNT10B increases osteoblast differentiation, while WNT5B induces adipocyte differentiation (left panel). Similarly, 
WNT10B correlates with osteoblastic osteosarcomas (OS), and WNT5B correlates with fibroblastic OS (right panel). Created in https://
www.biorender.com/.

Figure 2: WNT10B and WNT5B are not expressed in the same tumors. Osteosarcomas in the St. Jude Children’s Hospital 
Pediatric Cancer (PeCan) Data Portal were analyzed for WNT5B and WNT10B expression. p < 0.0001.
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CONCLUSIONS

Recent work has highlighted the importance of 
WNT5B signaling in osteosarcomas [10], reigniting the 
interest in targeting WNT signaling in osteosarcomas. 
WNT5B signaling could be inhibited with a ROR1 
antibody such as Zilovertamab. There are currently no 
WNT modulators in specifically osteosarcoma trials, but 
there are a few trials targeting WNT in solid tumors (FOG-
001, E7386, SM08502, and ST316 (β-catenin inhibitors), 
CGX1321, RXC004 and ETC-1922159 (porcupine 
inhibitors), and 9-ING-41 (a GSK-3β inhibitor)) [31]. 
Targeting WNT signaling in a few clinical trials for other 
cancer types has not been shown to be successful and this 
could be because they are targeting all tumors without 
determining the activating pathway. In addition, canonical 
WNT inhibitors lead to an increase in bone fractures 
[32], but a non-canonical inhibitor would not. As there is 
controversy over whether we should use WNT activators 
or WNT inhibitors to treat osteosarcoma, we hypothesize 
that it depends on whether the canonical or non-canonical 
pathways are activated, and this remains to be formally 
tested.
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