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ABSTRACT
Activating mutations in the mitogen-activated protein kinase (MAPK) pathway 

represent driver alterations governing tumorigenesis, metastasis, and therapy 
resistance. MAPK activation predominantly occurs through genomic alterations in RAS 
and BRAF. BRAF is an effector kinase that functions downstream of RAS and propagates 
this oncogenic activity through MEK and ERK. Across cancers, BRAF alterations include 
gain-of-function mutations, copy-number alterations, and structural rearrangements. 
In cancer patients, BRAF-targeting precision therapeutics are effective against Class 
I BRAF alterations (p.V600 hotspot mutations) in tumors such as melanomas, thyroid 
cancers, and colorectal cancers. However, numerous non-Class I BRAF inhibitors are 
also in development and have been explored in some cancers. Here we discuss the 
diverse forms of BRAF alterations found in human cancers and the strategies to inhibit 
them in patients harboring cancers of distinct origins.

INTRODUCTION

BRAF is an effector of MAPK signaling

The mitogen-activated protein kinase (MAPK) 
pathway is a vital cell signaling pathway [1]. The MAPK 
pathway regulates cellular functions ranging from cell 
growth and proliferation to tissue repair and wound 
healing [2–4]. Functional members of this pathway are the 
cytoplasmic serine/threonine kinases RAS, RAF, MEK, 
and ERK. Canonical activation of receptor tyrosine kinases 
leads to RAS-GDP phosphorylation, creating activated RAS-
GTP. This in turn phosphorylates RAF, which dimerizes 
and then phosphorylates MEK1/2. Phosphorylated MEK1/2 
then activates ERK1/2, which regulates cellular growth, 
proliferation, and cell death [5–7]. There are three distinct 
isoforms of the RAF proteins encoded by the ARAF, BRAF, 
and RAF1 (also known as CRAF) genes [8]. Each of these 
isoforms contains the same conserved regions (CR): the  
RAS-binding domain (CR1), regulatory domain (CR2), 

and functional kinase domain (CR3) [9]. Although all 
RAF kinases promote MAPK signaling, BRAF is the 
most consistently altered RAF family gene across human 
cancers.

BRAF in cancer

Due to these pro-growth and pro-survival functions, 
cancer cells can develop “oncogenic addiction” towards 
BRAF’s signaling activity [10, 11]. Initially characterized in 
melanomas, various groups including ours have identified 
activating BRAF alterations across multiple cancers [12–19]. 
Based on the American Association for Cancer Research’s 
(AACR) Genomics Evidence Neoplasia Information 
Exchange (GENIE, version 15.1) dataset, BRAF alterations 
are observed in several human malignancies, including 
44% of thyroid cancers, 35% of melanomas, and 12% 
of colorectal cancers; with multiple other major cancer 
types exhibiting lower frequencies of BRAF alterations 
(Figure 1A). Consistent with these genomic observations, 
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abundant pre-clinical evidence across many malignancies 
indicates that BRAF alterations drive an increase in MAPK 
signaling and, thus, tumor growth in cancer cell lines and 
transgenic mouse models [20–22].

Classes of BRAF alterations in cancer

Studies generally recognize three classes of 
activating BRAF alterations defined by their mechanisms 
of RAS dependency, dimerization status, and kinase 
activity [23]. Class I BRAF mutants involve missense 
mutations at valine 600 (p.V600), which lead to RAS-
independent BRAF monomeric activation with strongly 

elevated kinase activity [12, 24]. Class I alterations are 
the dominant form of BRAF alteration in melanomas, 
thyroid, colorectal, and ovarian cancers (Figure 1B). In 
these cancer types, tumors with Class I alterations can be 
treated with BRAF inhibitors or combinations of BRAF/
MEK inhibitors. Class II BRAF alterations consist of 
non-p.V600 mutations and structural rearrangements that 
yield homodimers, that are also RAS-independent but have 
moderate-to-high kinase activity [25]. Class II alterations 
appear to be the predominant form of BRAF alteration 
in prostate, bladder, and non-small cell lung cancers. 
Class III BRAF alterations are also non-p.V600 mutants, 
however, they heterodimerize with ARAF or wild-type 

Figure 1:  (A) BRAF alteration frequencies, according to GENIE 15.1, among select solid organ tumors (glioma, 11%; thyroid cancer, 44%; 
non-small cell lung cancer, 6%; bladder cancer, 5%; prostate cancer, 3%; colorectal cancer, 12%; pancreatic cancer, 2%; and melanoma, 
35%). (B) Relative proportions of distinct classifications of BRAF alterations across multiple cancer types (green = Class I, red = Class II, 
yellow = Class III, teal = structural rearrangement, and gray = unclassified).
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BRAF but are RAS-dependent and have low kinase activity 
[26]. Cervical cancer, hepatobiliary cancer, and non-small 
cell lung cancer harbor relatively high rates of Class III 
BRAF alterations. Due to the requisite upstream stimulus 
of mutant RAS, Class III mutants may be susceptible to 
RAS-specific targeted therapies [27].

Evolution of BRAF inhibition in the clinic

Over the past 15 years, precision therapies targeting 
BRAF have been used to treat patients with metastatic 
melanomas. In 2010, Flaherty et al. showed an objective 
response in >80% of Class I-altered metastatic melanoma 
patients using PLX4032, later named vemurafenib [28]. 
In 2012, Hauschild et al. demonstrated a 70% reduction in 
the risk of death (HR = 0.30) in BRAF p.V600E-mutated 
metastatic melanoma patients treated with dabrafenib, 
compared to chemotherapy (dacarbazine) control [29]. 
These studies were foundational for establishing the 
utility of the Class I BRAF inhibitors, vemurafenib and 
dabrafenib. Flaherty et al. also indicated that metastatic 
melanomas resistant to BRAF inhibitors still require 
MAPK activity and that combined use of BRAF and 
MEK inhibitors demonstrated a significant increase in 
median progression-free survival (PFS) compared to 
BRAF monotherapy [30, 31]. In 2022, the FDA granted 
accelerated approval for this combination in all Class 

I BRAF-mutant metastatic solid tumors [32]. In sum, 
inhibitors targeting Class I BRAF alterations represent 
one of the major successes in precision oncology to date 
(Figure 2).

In contrast, agents targeting Class II and III 
BRAF alterations have yet to achieve similar success. 
Mechanistically, Class II and III BRAF alterations are 
not susceptible to Class I inhibitors, which attenuate 
BRAF activity by binding monomeric BRAF and 
inducing dimerization. Paradoxically, these drugs 
enhance Class II and III altered BRAF signaling, in 
which dimerization promotes enhanced MAPK signaling 
and ultimately tumor growth [25, 33–35]. Recently, a 
new focus has been on developing paradox breakers and 
type II pan-RAF inhibitors that ablate the upregulated 
MAPK activity seen in Class II and III BRAF-altered 
cancers treated with currently FDA-approved RAF 
inhibitors. Results from the phase II FIREFLY-1 
clinical trial assessing the type-II pan-RAF inhibitor 
tovorafenib showed high tolerability and strong efficacy 
in non-Class I BRAF-mutant pediatric low-grade gliomas 
(pLGG) harboring BRAF structural rearrangements 
[36]. Specifically, relapsed/refractory pLGG patients 
demonstrated an overall response rate of 67% and a 
median duration of response of 16.6 months, exceeding 
both the primary and secondary pre-specified endpoints. 
With these striking results, the FDA recently approved 

Figure 2: Timeline showing major FDA approvals involving BRAF/MEK inhibitors. pLGG = pediatric low-grade gliomas 
NSCLC = non small cell lung cancer.
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tovorafenib for relapsed/refractory pLGG patients 
harboring BRAF structural rearrangements [37].

BRAF structural rearrangements

Structural rearrangements of BRAF also represent 
a potentially actionable subgroup of BRAF alterations 
and are most prevalent in gliomas, prostate cancers and 
pancreatic cancers (Figure 1B). In one case study, a 
prostate cancer patient with an SND1-BRAF structural 
rearrangement who was refractory to standard therapies 
showed a strong clinical response to trametinib 
monotherapy, an FDA-approved MEK inhibitor [38]. 

These BRAF rearrangement events were also seen with 
some frequency at the prostate cancer level, as our group 
recently examined 15,864 prostate tissue biopsies and 
7,566 liquid biopsies, where we showed that 46.7% of 
prostate cancer patients harboring BRAF alterations 
exhibited structural rearrangements [13].

In addition, certain structural rearrangements were 
exclusively found in specific cancer types, as is the case 
for SLC45A3-BRAF and TMPRSS2-BRAF structural 
rearrangements in prostate tumors and no other cancer 
types (Figure 3A). TMPRSS2 and SLC45A3 are generally 
expressed in the prostate epithelium and their expression 
is regulated by the lineage-specifying transcriptional 

Figure 3:  (A) Relative proportion of specific structural rearrangement BRAF events in prostate cancer versus all other cancer types (red = 
prostate cancer, gray = non-prostate cancer). (B) Mechanism depicting possible downstream effects of BRAF structural rearrangement 
events that yield a truncated BRAF transcript with a fully functional kinase domain.
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activity of the androgen receptor (AR) [39]. In prostate 
cancers, SLC45A3-BRAF and TMPRSS2-BRAF structural 
rearrangements thus result in activated BRAF kinase 
activity under the control of AR (Figure 3B). This fusion-
protein product would also be predicted to be independent 
of RAS activity due to loss of the 5′ RAS-binding domain. 
Altogether, this represents another mechanism of BRAF 
activation in cancer, whereby BRAF kinase expression is 
driven by aberrant transcriptional activity. The efficacy 
of BRAF or MAPK inhibitors in such cancer patients 
requires further investigation in prospective studies.

CONCLUSION

Class I BRAF inhibitors are one of the landmark 
achievements in precision oncology, as recently evidenced 
by the tissue-agnostic FDA approval of dabrafenib/
trametinib in patients with metastatic BRAF p.V600E-
mutant solid tumors. Although targeted therapies against 
Class II alterations, Class III mutations, and BRAF 
rearrangements are largely still in early development, 
the accelerated approval of tovorafenib for patients with 
relapsed/refractory BRAF-altered pediatric low-grade 
glioma underscores the therapeutic potential of this and 
other next-generation strategies to target aberrant MAPK 
signaling.
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