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ABSTRACT
In the landscape of cancer treatments, the efficacy of coadjuvant molecules 

remains a focus of attention for clinical research with the aim of reducing toxicity 
and achieving better outcomes.

Most of the pathogenetic processes causing tumour development, neoplastic 
progression, ageing, and increased toxicity involve inflammation. Inflammatory 
mechanisms can progress through a variety of molecular patterns. As is well known, the 
ageing process is determined by pathological pathways very similar and often parallel to 
those that cause cancer development. Among these complex mechanisms, inflammation 
is currently much studied and is often referred to in the geriatric field as ‘inflammaging’.

In this context, treatments active in the management of inflammatory 
mechanisms could play a role as adjuvants to standard therapies.

Among these emerging molecules, Silibinin has demonstrated its anti-
inflammatory properties in different neoplastic types, also in combination with 
chemotherapeutic agents.

Moreover, this molecule could represent a breakthrough in the management of 
age-related processes.

Thus, Silibinin could be a valuable adjuvant to reduce drug-related toxicity and 
increase therapeutic potential.

For this reason, the main aim of this review is to collect and analyse data 
presented in the literature on the use of Silibinin, to better understand the mechanisms 
of the functioning of this molecule and its possible therapeutic role.

INTRODUCTION

Inflammation underlies many disease processes, and 
among these, ageing and the development of neoplasms 
would seem to have similarities and parallels underlying 
an important inflammatory substrate.

Silibinin was isolated from the seeds of milk thistle 
(Silybum marianum) and it a polyphenolic flavonolignan 
[1] used to date as a treatment for hepatopathies and for 
different exchange mechanisms; it is also a molecule 

with inflammatory, antioxidant and anti-fibrotic 
properties [1] (Figure 1).

Furthermore, there are promising data on the 
application of Silibinin as an anti-cancer coadjuvant in 
various types of neoplasia [2].

In this regard, the antitumour characteristics of 
Silibinin have been documented both in vivo and in vitro.

In particular, this molecule seems to play a role in 
inhibiting proliferation, blocking metastasis and tumour 
invasion, and inhibiting angiogenesis.
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Furthermore, Silibinin could be useful as an inducer 
of programmed death (apoptosis) and autophagy.

Finally, studies show a role for Silibinin in cell cycle 
arrest and in the inhibition of certain signalling pathways 
such as MAPK, STAT3, Notch-1, ERK and Akt.

For this reason, Silibinin could be used in 
combination with antiblastic drugs to achieve a synergistic 
effect and improve the outcomes of neoplastic patients.

Since several studies show that Silibinin is 
implicated at some critical points in the processes of 
ageing and ‘inflammation’, this treatment could counteract 
‘inflammation’ mechanisms above all in older adults [2].

ROLE OF SILIBININ IN DIFFERENT 
CANCER’S TYPE

Studies investigating the efficacy of Silibinin as 
an anticancer agent are promising [2–4]; in particular, 
the most interesting data concern its effectiveness as an 
adjuvant in the treatment of gliomas.

Gliomas are the most common brain tumors, 
which maintain a poor prognosis, despite the aggressive 
therapeutic strategies (surgery, radiotherapy, chemotherapy) 
that are implemented to increase the survival of patients 
affected by this neoplasm [5].

To reduce the side effects of these treatments and 
to increase their effectiveness, therapeutic strategies also 
based on natural compounds are currently being taken into 
consideration [6].

In this context, research regarding Silibinin has 
shown interesting results regarding its ability to inhibit cell 
proliferation [7] and its role in sensitizing glioma cells to 
apoptosis [8].

The promising results of these studies suggest that 
Silibinin could inhibit cell proliferation by increasing 
the intracellular Ca2+ concentration. This increase in 
intracellular Ca2+ appears to have a critical role in regulating 
cell death mediated by a calpain-dependent pathway and in 
inducing the generation of ROS. Several studies also show 

that Silibinin is able to generate ROS through a CA2+ 
-dependent mechanism by the respiratory chain in the inner 
mitochondrial membrane [9] or through direct stimulation of 
the generation of mitochondrial ROS [10].

Furthermore, this milk thistle-derived molecule can 
induce programmed cell death by activating mitogen-
activated protein kinases (MAPKs) through the generation 
of ROS.

Moreover, Silibinin is able to activate (via ROS) 
and inhibit (via antioxidant N-acetylcysteine   (NAC)) 
the extracellular signal-regulated kinase (ERK), the p38 
kinase and the N-terminal c-Jun kinase (JNK) in time 
mode [11]. This suggests that MAPK activation is likely 
involved in Silibinin-induced cell death.

Another mechanism believed to be secondary to 
the action of Silibinin is the inhibition of glioma cell 
migration.

Regarding in vivo antineoplastic effects, some 
authors have reported data on Silibinin administered orally 
in mice with gliomas: these data demonstrated a decrease 
in glioma growth in vivo, thanks to the administration of 
this molecule.

In particular, the regression of tumor volume could 
be induced by Silibinin, leading cells to programmed 
death through a caspase-dependent mechanism, involving 
the Ca2+/ROS/MAPK pathways, [5, 12].

In addition, Silibinin appears to play a role in cell 
migration through mitochondrial fusion and inhibition of 
ROS [13].

Some studies have also shown the ability of Silibinin 
to promote the epithelial-mesenchymal transition: 
this transformation could be due to the decrease in the 
expression of proteins linked to migration (for example 
metalloproteinases 2 and 9) or to the increase in the 
expression of other biomarkers, including E-cadherin.

The discovery of the epidermal growth factor 
receptor (EGFR) and the possibility of using it as a 
therapeutic target has changed the natural history of many 
patients suffering from cancer.

Figure 1: Molecular structure of Silibinin.
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In the context of gliomas, rat cell lines expressing 
EGFR were tested to evaluate the ability of Silibinin 
to inhibit mitogenic signaling, regulate cell survival 
and alter the cell cycle [14, 15]. The researchers 
noted that EGRF-positive cells demonstrated 
cytotoxicity in response to Silibinin, on the other hand,  
a lack of toxicity was observed in cell lines without EGFR 
sequences. Moreover Silibinin seems to be able to inhibit 
the binding of EGF to the EGFR resulting in cytotoxicity 
and with unknown effects on the dimerization of the 
receptor. 

SILIBININ AS STAT3 INHIBITOR

Silibinin has been shown to be both in vitro and 
in vivo, a physiological down-regulator of STAT3, a 
protein which is part of “signal transducer and activator of 
transcription” family (STAT) activity [16]. This molecule 
appears to have a role in reducing the incidence of main 
chemotherapy-related toxicities, such as nephrotoxicity, 
neurotoxicity and cardiotoxicity in pre-clinical models, as 
well as in preventing drug resistance mechanisms.

Members of STAT family share a similar functional 
structure: they are cytoplasmic proteins, containing 
Src homology 2 (SH2) domains. Being responsive to 
different levels of cell growth factors and cytokines they 
work as transcriptional factors [17]. Currently STAT3 is 
the most known member of STAT family, since several 
studies have shown that altered regulation of this protein 
may underlie loss of cell cycle control, uncontrolled cell 
survival, carcinogenesis, and metastatic dissemination and 
immunoresistance processes. Accordingly, this protein has 
been largely considered as a potential therapeutic target in 
different tumor types, leading to the development of a new 
class of antineoplastic drugs, STAT3 inhibitors, classified 
as indirect or direct based on their mechanism of action 
[17, 18].

Given its modulatory function on STAT3, Silibinin 
is under evaluation in the oncological research field both 
as monotherapy and in combination with other available 
therapeutic regimens [19]. 

BRAIN METASTASIS GROWTH

Among intracranial tumors, metastases are the 
most common form of central nervous system (CNS) 
involvement in adults (more than 50%). The process 
of brain metastasis appears to be the most challenging 
for tumor cells, due to the presence of the blood-brain 
barrier (BBB) and the distinctive microenvironment [20]. 
The metastatic potential of cancer cells increase as they 
acquire the ability to escape natural defense mechanisms, 
interact with various cell types in different cellular 
microenvironments, affecting their activity in a pro-
metastatic way, and lastly promoting their own survival [21, 
22]. Within this specific microenvironment, astrocytes and 

microglia cells seem to play a critical role in the process of 
promoting brain metastatization. In fact, astrocytes are CNS 
cells able to react to tissue damage by the activation of a 
morphological and transcriptomic reactive state (Reactive 
astrocytes- Ras), which has been demonstrated to affect the 
course of several neurological diseases including secondary 
SNC lesions [23]. This reactive state also appears to be 
mediated by STAT3 activation, resulting in a pro-metastatic 
environment [24, 25]. Furthermore, STAT3 hyperactivation 
in reactive astrocytic phenotype (RAs) could act negatively 
on the activation of both innate and acquired immune 
response and in particular on CD8+ lymphocytes, of 
which also brain metastases are often infiltrated. Activated 
STAT3 RAs cells could therefore act by reducing the 
tumor infiltrate and creating an immunosuppressive 
microenvironment [26].

The importance of STAT3 activation for CNS 
colonization, microenvironment changes, and the 
potential utility of administering anti STAT 3 drugs also 
in combination with Immune Checkpoint Inhibitors 
(ICIs) is supported by the fact that Silibinin is able to 
cross the BBB and reduce STAT3 expression in the tumor 
microenvironment. It was used in an RCT test to test the 
overall survival from brain metastasis diagnosis compared 
to a control cohort.

COADJUVANT MECHANISM OF 
SILIBININ

Protector on chemotherapy-induced toxicity

Most antiblastic drugs are metabolized/excreted 
by the kidney, potentially resulting in dose-related renal 
toxicity, as acute or chronic kidney injury and electrolyte 
disorders. Sometimes renal damage may be irreversible 
[2, 27, 28]. Several studies have demonstrated a protective 
role of Silibinin toward renal function when administered 
together with nephrotoxic drugs such as cisplatin and 
vinorelbine [29] (Table 1).

Silibinin in reversing resistance to chemotherapy

STAT pathway activation has been associated 
with primary chemoresistance and the development 
of secondary chemoresistance [30]. Based on this 
evidence, it is expected that inactivation of STAT3 
may play a synergistic role by potentiating the effect of 
chemotherapeutic drugs [31]. 

Among these, the greatest evidence in terms of 
synergistic efficacy was obtained combining Silibinin with 
paclitaxel: known as a microtubule stabilizer, paclitaxel 
has been shown to reduce STAT3 protein activity (Tyr705) 
and to inhibit the expression of STAT3-target genes via a 
negative feedback loop [32]. Further evidences have been 
obtained combining Silibinin with Arsenic Trioxide (ATO) 
in human glioblastoma cell line, in which a prevalence of 
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apoptotic phenomena and reduced invasive capacity were 
observed [33].

Silibinin in reversing resistance to targeted 
therapies

The activation of STAT3 is among the pathways 
proposed to be involved in the development of drug 
resistance in oncogene-addicted tumor cells, although 
the specific mechanism is still unclear: STAT3 could be 
activated to prevent apoptosis and sustain cell viability 
but it may also be activated early in a cancer-cell sub-
population, maybe immediately after drug exposure 
[34].

In this setting, elevated levels of pSTAT3 have 
been associated to poor prognosis and lower overall 
survival in patients affected by hepatocellular carcinoma, 
where this molecule plays a pivotal role in inflammation, 
and in sustaining survival, proliferation, and invasion 
capability of malignant cells [35]. Numerous studies 
have also demonstrated the essential role of STAT3 in 
the development of drug resistance toward epidermal 
growth factor receptor (EGFR) tyrosine kinase inhibitors 
(TKIs): high levels of STAT3 have been recently 
reported to predict worse progression-free survival.
in patients affected by Non-Small Cell Lung Cancer 
(NSCLC) harboring EGFR activating mutations treated 
with this class of drugs [36, 37]. Interestingly, Silibinin 
have been shown to be able to overcome such resistance 
towards two different TKI, erlotinib and gefitinib, both 
in vivo and in vitro, although the ability of Silibinin 
to revert such resistance acting through the pSTAT 
pathtway inhibition is yet to be confirmed [38–40].

Silibinin in reversing resistance to radiotherapy

Radio-resistance is one of the main limitations to 
the efficacy of radiation therapy and may be induced 
by the use of fractionated radiation. At a cellular level, 
this has been associated to EMT: cancer cells surviving 
to ionizing radiations often feature EMT-like phenotype, 
that appears to be essential for the development of radio-
resistance [41]. Radiation-resistant cancer cells have 
been found to feature high levels of nuclear expression of 
STAT3 [42], and some studies suggested that the inhibition 
of this pathway can reverse the EMT process, thus 
overcoming radio resistance [43–45]. Based on these data, 
the combination of ionizing radiation with Silibilin may 
represent a possible strategy to overcome radio resistance 
by inhibiting STAT3 signaling and therefore EM transition 
[46].

INFLAMMAGING

The process of aging is the combination of various 
factors, involving a variety of environmental, stochastic, 
and genetic-epigenetic events. One of the pivotal 
mechanisms involved is inflammation, that usually 
contributes to aging process through the development 
of the so-called “inflammaging”: a chronic, low-grade 
inflammation status [47, 48].

Various organs and tissues, including bone and 
muscle and adipose tissue, are able to produce pro-
inflammatory compounds, and, as such, inflammaging 
appears to be a systemic, multifactor and multiorgan 
condition, determined by a complex balance between pro- 
and anti-inflammatory factors. It can be considered among 

Table 1: Fields of application and mechanisms of Silibinin

CANCER MECHANISMS

⇓ Ca2+/ROS/MAPK
⇓ STAT3
⇑ Sensibility to apoptosis
⇓ Tumor cell proliferation
⇓ Metastasis growth
⇓ Resistance to chemo/radio/target therapies

NEUROPATHY (CIPN)

⇓ Microtubule disruption
⇓ Oxidative stress
⇓ Mitochondrial damage
⇓ Altered ion channel activity
⇓ DNA Damage
⇓ Immunological processes

INFLAMMATION ⇓ IL-6
⇓ ROS

AGING

⇓ Oxidative stress
⇓ Mitochondrial Dysfunction
⇓ Shortened Telomeres
⇓ DNA Damage
⇓ Cell Senescence
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the main factors in the pathogenesis of various age-related 
diseases, such as atherosclerosis, type II diabetes, as well 
as of many chronic conditions including sarcopenia [49], 
osteoporosis [50], frailty and disability [51]. Overall, 
this inflammatory process can contribute to increase the 
risk of multimorbidity and disease susceptibility, and to 
impair the ability to appropriately respond to stress as well 
as to treatments, ultimately favoring the development of 
geriatric syndromes, disabilities, and death.

Multiple processes, both at a cellular and molecular 
level, have been taken in account to explain inflammaging, 
among them inflammasome activation, dysbiosis, cellular 
senescence, mitochondrial dysfunction, defective 
autophagy and mitophagy, ubiquitin-proteasome system 
dysregulation, activation of the DNA damage response 
[52], and chronic activation of the innate immune system 
[48].

Multiple epidemiological and biodemographic 
studies have shown that inflammation biomarkers can 
be robust predictors of morbidity and mortality in the 
elderly [53, 54]. Among the multiple factors involved, 
interleukin-6 (IL-6), with its complex pro-and anti-
inflammatory functions, deserves a primary role, and has 
been associated to multiple conditions and age-related 
disease as well as to mortality in the elderly [55].

Some authors have also suggested that inflammaging 
could be considered in some way a form of autoimmune 
condition in which the distinction between self and non-
self structures get increasingly blurred with age, and 
that this process could be caused by the malfunction of 
some of the various mechanisms appointed to dispose 
of senescent or apoptotic cells [51]. Indeed, the process 
may be triggered by the oxidative stress caused by the 
accumulation of free radical within a cell can activate a 
network of distress sensors (Nlrp3 inflammasome) thus 
activating the immune response and the production of pro-
inflammatory cytokines such as IL-1beta and IL-8. Hence, 
Inflammaging may be triggered by the slow accumulation 
with age of damaged macromolecules and cells, that lead 
with time to chronic stress.

The same aging process that affects the human 
body’s microbial constituents (i.e., gut microbiota), 
altering their physiological functions (i.e. elimination of 
toxic substances, production of important metabolites and 
obstacle to the growth of microorganisms harmful to the 
organism), is responsible for a state of chronic low-grade 
inflammation mediated by binding to pattern recognition 
receptors (PPR), the activation of peroxidation processes, 
membrane rupture and release of cellular components into 
the extracellular space and the triggering of autoimmune 
reactions.

Standard cell components [56], considered part 
of the cellular self, usually do not stimulate immune 
and inflammatory reactions. However, when they 
are misplaced and occur outside of their standard 
physiological location, they could sense and bind pattern 

recognition receptors (PPRs) inducing an inflammatory 
response.

The misplacement of self-molecules appears 
to increase with age, supporting the hypothesis that 
inflammaging is fueled by increased exposure of cell 
components. Given that mitochondria are reminiscent 
of their ancestral bacterial origin, their parts share 
with bacteria the ability to bind to PRRs leading to an 
inflammatory response.

The inflammatory phenotype originates inside 
cells with different organelles’ contributions, including 
the nucleus, and various mechanisms, such as telomere 
attrition, DNA damage response (DDR), mitochondrial 
dysfunction, proteasome/lysosome alteration, 
inflammasome activation, and endoplasmic reticulum 
(ER) stress. Supporting this idea, human longevity is 
characterized by the preserved function of proteasomes 
[57] and autophagy (both mechanisms involved to prevent 
the accumulation of cellular components): the activity of 
the ubiquitin-proteasome system and autophagy have 
also been associated with the rate of aging [58, 59], and a 
higher expression of the immunoproteasome is a sign of 
neuroinflammation, as found in the brains of patients with 
Alzheimer Disease (AD) but not of healthy older subjects 
[60].

These misplaced molecules are not confined within 
the cell and actively or passively leave them, being taken 
up by other distal cells and triggering a feed-forward 
propagation–amplification cycle of inflammation and 
inflammaging in distant cells by traveling via the 
circulatory and lymphatic systems. This suggests that 
inflammaging is propagated by the secretion of damaged 
cellular components produced by compromised, stressed, 
or senescent cells and organelles during a pathological 
event [61], transmitted in a paracrine fashion by 
activation of IL-1 signaling [62]. Local propagation 
can be significant in pathologies such as cancer in older 
subjects, where systemic inflammaging occurs [63]. 
Moreover, systemic inflammation can accelerate aging 
via reactive oxygen species (ROS)-mediated exacerbation 
of telomere dysfunction and cell senescence in the 
absence of any other genetic or environmental factors 
[64].

There is, therefore, excellent attention today towards 
all those products capable of reducing these inflammatory 
mechanisms at the base of aging and all those changes 
associated with it (Table 1).

Peripheral neuropathy

Inflammation is also the basis of chemotherapy-
induced painful peripheral neuropathy (CIPN).

In particular, chemotherapeutics damage the nervous 
system through mechanisms involving microtubule 
disruption, oxidative stress, mitochondrial damage, 
altered ion channel activity, DNA damage, immunological 
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processes, and neuroinflammation [65]. which leading to 
the CIPN.

CIPN is a predominantly sensory neuropathy 
as a typical “glove and stocking” neuropathy; it is 
characterized by high prevalence among cancer patients 
negatively impacting their quality of life and it varies in 
intensity and duration usually emerging weeks or months 
after chemotherapy completion.

For these reasons, chemotherapy-induced painful 
neuropathy (CIPN) is considered a significant dose-
limiting side effect of several chemotherapeutic agents 
limiting therapeutic options for patients. 

Six main agent groups can result in CIPN 
development: platinum-based antineoplastics (particularly 
oxaliplatin and cisplatin), vinca alkaloids, epothilones, 
taxanes, proteasome inhibitors, and immunomodulatory 
drugs. 

Data suggest that, as a natural antioxidant 
compound, the administration of Silibinin in combination 
with oxaliplatin, the best known among chemotherapeutics 
for inducing CIPN through oxidative stress), can prevent 
oxidative damage reducing oxaliplatin-dependent pain 
neuropathy. Accordingly, Silibinin could be a valid 
therapeutic option for CIPN [66] (Table 1).

CONCLUSIONS AND POTENTIAL NEW 
FIELDS

Inflammation is a critical process in tumor 
progression as demonstrated by the fact that cytokines 
released in chronic inflammatory conditions provide 
a microenvironment favourable to tumor growth and 
metastasis [67]. In particular, mitochondrial damage 
it would seem plays an essential role in inflammation 
as it is a prerequisite for the assembly and activation of 
inflammasome through oxidized mitochondrial DNA 
(mtDNA) released in a ROS-dependent manner [68, 
69]. On the basis of these considerations, data suggest 
that Silibinin and NAC administration, limiting ROS 
generation, can decrease the production of ox-mtDNA in 
human triple-negative breast cancer cells, [13, 70, 71]. 

This consideration could be the starting point to 
study whether Silibinin could contrast tumor progression 
and aging and inflammaging through molecular and 
cellular mechanisms until now not completely clarified.

Furthermore, data suggest that the inhibition of 
STAT3 mediated by Silibilin, could be considered an 
interesting therapeutic approach also for patients with 
brain metastases. Indeed, this setting of patients maintains 
a poor prognosis with limited treatment options, therefore, 
further investigations on the role of Silibilin in this setting 
of patient could offer better outcomes and survival 
benefit.

With the aim of confirming this hypothesis a 
randomised phase 2 study is investigating the preventive 
role of Silibinin against placebo in patients who have 

undergone complete resection of a brain metastasis from 
NSCLC and breast cancers (NCT05689619).
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