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Editorial

The dark side of PLK1: Implications for cancer and genomic 
instability

Lilia Gheghiani and Zheng Fu

PLK1 is a master regulator of the cell cycle that has 
functions ranging from mitotic commitment, centrosome 
maturation, bipolar spindle formation, chromosome 
segregation, to furrow formation in cytokinesis, together 
preventing genomic instability and the transmission of 
altered DNA to daughter cells [1, 2] (Figure 1). Beside 
its role during mitosis, PLK1 is also a modulator of 
DNA replication, DNA damage response (DDR), G2 
DNA-damage checkpoint, chromosome dynamics, 
and microtubule dynamics by its interaction with and 
phosphorylation of several key factors involved in these 
pathways [3, 4]. The coordination of PLK1 functions 
at various stages of the cell cycle relies on a spatial and 
temporal regulation mainly via transcriptional and post-
translational modifications [2, 5, 6]. PLK1 expression 
patterns are under dynamic control and related to cell 
cycle progression in normal adult tissues [6, 7]. Usually 
low in interphase, PLK1 protein levels increase gradually 
throughout the S phase and reach a maximum in the 
G2/M phase. They are then largely degraded after mitosis 
[4, 5, 7]. PLK1 expression (at both mRNA and protein 

level) is found upregulated in actively dividing tumor 
cells compared to normal cells [3, 8, 9]. This increased 
expression is a common feature of human cancer, 
manifesting in a variety of human tumors, including 
melanoma, carcinomas (head and neck squamous 
cell carcinoma, esophageal squamous cell carcinoma, 
hepatocellular carcinoma, gastric carcinoma, and prostate 
carcinoma), sarcomas, and lymphomas [9–13]. Moreover, 
upregulation of PLK1 is associated with high tumor 
grade and poor patient prognosis [9]. More importantly, 
downregulation of PLK1 expression usually results in 
decreased proliferation, mitotic arrest, and apoptotic cell 
death of various cancer cells with no or minimal effect on 
normal cells [7, 14–16], suggesting that PLK1 may be a 
potential biomarker to predict cancer aggressiveness and 
an attractive target for cancer therapeutics. Consistently, 
an extensive body of literature suggest that PLK1 is 
directly involved in tumor initiation and progression [3, 8, 
17]. Several PLK1 small molecule inhibitors have reached 
clinical trials. Even though studies have suggested that 
PLK1 contributes to tumorigenesis, the ability of PLK1 to 

Figure 1: The role of PLK1 in tumorigenesis and cancer heterogeneity. Left: High level of PLK1 induces a multitude of 
mitotic defects and inactivation of cell cycle checkpoints (Abbreviations: SAC: spindle assembly checkpoint and DDR: DNA damage 
response), leading to uncontrolled cell proliferation and accumulation of chromosomal instability (CIN). Right: PLK1 overexpression leads 
to increased CIN, which in turns promotes checkpoint adaptation, cell transformation, drug resistance, and tumor heterogeneity.
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drive oncogenic transformation on its own in vivo was still 
questionable due to a lack of sophisticated animal models 
for experimentation [18, 19]. 

To address this important scientific question, we 
generated a new genetically engineered mouse (GEM) 
model using the CAGGS (cytomegalovirus (CMV) early 
enhancer/chicken β-actin) promoter to drive exogenous 
PLK1 expression, allowing its ubiquitous and robust 
gene expression in transgenic mice [20]. Mice were 
intercrossed to generate cohorts of wild-type (WT), 
Plk1TA/+ (heterozygous for the activated Plk1 transgene), 
and Plk1TA/TA (homozygous for the transgene) in order 
to have a graded expression of the Plk1 transgene in a 
wide variety of tissues and organs. Our transgenic model 
mirrors the magnitude of enhanced PLK1 expression 
observed in human tumors. Ubiquitously enhanced 
expression of PLK1 was sufficient to drive spontaneous 
tumorigenesis in multiple tissues, providing the first 
evidence that PLK1, when overexpressed, becomes 
a potent oncogene in vivo. Using fluorescence in situ 
hybridization, karyotyping, and real-time live-cell imaging 
experiments, we have demonstrated that increased 
PLK1 expression caused multiple defects in mitosis 
and cytokinesis, which drives chromosomal instability 
(CIN). We monitored cell cycle progression of primary 
pulmonary alveolar epithelial cells and mouse embryonic 
fibroblasts derived from these transgenic mice and showed 
that PLK1 overexpression promoted the formation of 
supernumerary centrosomes, leading to multipolar mitotic 
spindle assembly, merotelic kinetochore-microtubule 
attachment, lagging chromosomes, chromatin bridges, 
and cytokinesis failures (Figure 1). The genomic chaos 
elicited by increased PLK1 expression failed to halt cell 
cycle progression, resulting in binucleated cells, giant 
multinucleated cells, and micronucleated cells (Figure 1). 
How do these cells tolerate genomic chaos? Further study 
showed that PLK1 overexpression override cell cycle 
checkpoints (both spindle assembly checkpoint (SAC) and 
DNA damage checkpoint). PLK1 upregulation impaired 
key regulators of the SAC that monitors kinetochore-
microtubule attachments and ensures correct segregation 
of chromosomes. Furthermore, DNA damage lesions were 
detected, as evidenced by the activation (phosphorylation) 
of the ataxia-telangiectasia mutated (ATM) kinase in 
tumor tissue derived from Plk1 transgenic mice; however, 
the propagation of the DNA-damage signals through 
the ATM-checkpoint kinase 2 (Chk2) pathway and p53-
mediated checkpoint were impaired when the level 
of PLK1 is high. These provide an explanation of how 
chromosomally unstable Plk1 transgenic cells continue 
to proliferate and accumulate CIN, leading to malignant 
transformation and cancer development. A deeper 
understanding of the mechanism of action by which 
PLK1 compromises these checkpoints would guide the 

development of more effective and targeted treatment 
regimens for cancer patients with PLK1 overexpression.

In summary, this study provides a novel GEM 
model that recapitulates the increased PLK1 expression 
observed in many human cancers and demonstrates 
that PLK1 overexpression drives spontaneous tumor 
formation in multiples organs in mouse, revealing the 
dark side of PLK1 as a potent proto-oncogene. CIN is a 
hallmark of human cancer, but, in some cases, CIN has 
also been associated with tumor cell death depending of 
the degrees and sites of CIN [21–23]. Multiple lines of 
evidence provided by this study strongly support PLK1 as 
a CIN gene, which may open a new avenue to target CIN-
positive cancers in humans. Currently, the clinical utility 
of PLK1 inhibitors has yet to be realized due to dose-
limiting toxicities, poor efficacy as a monotherapy, and 
a lack of predictive biomarkers to measure the response 
to PLK1 inhibition [14, 16, 24]. Alternative therapeutic 
strategies, such as co-delivery systems using nanoparticles 
or combination therapies, are under development in order 
to enhance the efficacy of PLK1 inhibition [25–28]. With 
expanding discoveries of PLK1 function and mechanisms 
of action, we hope that PLK1-targeted therapies will soon 
join the frontlines in the fight against cancer.
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