Research Papers:
Caloric restriction causes a distinct reorganization of the lipidome in quiescent and non-quiescent cells of budding yeast
PDF | Full Text | Supplementary Files | How to cite | Press Release
Metrics: PDF 860 views | Full Text 2138 views | ?
Abstract
Karamat Mohammad1, Emmanuel Orfanos1 and Vladimir I. Titorenko1
1 Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
Correspondence to:
Vladimir I. Titorenko, | email: | [email protected] |
Keywords: cellular aging; cellular quiescence; caloric restriction; geroprotectors; lipids
Received: October 01, 2021 Accepted: November 10, 2021 Published: November 23, 2021
ABSTRACT
After budding yeast cells cultured in a nutrient-rich liquid medium with 0.2% glucose (under caloric restriction conditions) or 2% glucose (under non-caloric restriction conditions), ferment glucose to ethanol and then consume ethanol, they enter the stationary phase. The process of their chronological aging begins. At that point, the yeast culture starts to accumulate quiescent and non-quiescent cells. Here, we purified the high- and low-density populations of quiescent and non-quiescent cells from the yeast cultures limited in calorie supply or not. We then employed mass spectrometry-based quantitative lipidomics to assess the aging-associated changes in high- and low-density cells’ lipidomes. We found that caloric restriction, a geroprotective dietary intervention, alters the concentrations of many lipid classes through most of the chronological lifespan of the high- and low-density populations of quiescent and non-quiescent cells. Specifically, caloric restriction decreased triacylglycerol, increased free fatty acid, elevated phospholipid and amplified cardiolipin concentrations. Based on these findings, we propose a hypothetical model for a caloric restriction-dependent reorganization of lipid metabolism in budding yeast’s quiescent and non-quiescent cells. We also discovered that caloric restriction creates lipidomic patterns of these cells that differ from those established by two other robust geroprotectors, namely the tor1Δ mutation and lithocholic acid.
All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 28133