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ABSTRACT
Thyroid cancer incidence, recurrence, and death rates are higher among Filipino 

Americans than European Americans. We propose that vitamin D binding protein 
(DBP) with multifunctionality with ethnic variability plays a key role within different 
ethnicities. In this study, we determined the correlation between differential DBP 
expression in tumor tissues and cancer staging in Filipino Americans versus European 
Americans. We assayed DBP expression by immunohistochemistry and analyzed the 
data with confocal microscopy on 200 thyroid cancer archival tissue samples obtained 
from both ethnicities. DBP-stable knockdown/gain-in-function assays were done by 
using DBP-shRNA/DBP-cDNA-expression in vitro. The majority of Filipino Americans 
presented with advanced tumor staging. In contrast, European Americans showed 
early staging and very few advanced tumors. A significantly low to no DBP staining 
was detected and correlated to the advanced staging in Filipino Americans. On the 
contrary, in the tumor tissues derived from European Americans, moderate to strong 
DBP staining was detected and correlated to early staging. When downregulation 
of the DBP gene in papillary thyroid cancer (PTC) cell lines was observed, tumor 
proliferation and migration were enhanced. On the other hand, the upregulation of 
the DBP gene decreased cell proliferation and migration in PTC cells. In conclusion, 
we determined a differential expression of an essential biological molecule (DBP) is 
linked to cancer staging in thyroid cancer health disparities in two ethnicities. Loss-of-
DBP/gain-in-DBP-function influenced tumor progression. A future study is underway 
to determine the DBP regulation and its downstream pathways to elucidate strategies 
to eliminate the observed thyroid cancer health disparities.

INTRODUCTION

Thyroid cancer is one of the most prevalent 
endocrine cancers [1–4]. An epidemic of thyroid cancer 
(TC) in California was reported by the California-based 
Cancer Prevention Institute [2, 5–9]. According to the 
California Cancer Registry, TC incidence is higher in 

Filipino Americans than European Americans or other 
Asian Americans [10–16]. Although it is believed that 
there is an actual increase in thyroid cancer incidence due 
to changes in risk factors [17–21], the exact mechanism 
of this steady increase remains unknown. According 
to the analysis of ethnicity and geographical residence, 
variations in thyroid cancer incidence may be attributed 
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to local environmental influences and genetic/biological 
alterations [10, 22, 23]. However, currently no mechanism 
explains the observed increase in incidence, recurrence, 
and death rate among Filipino Americans with thyroid. We 
identified a highly polymorphic protein, called vitamin D 
binding protein (DBP) that could play an important role 
in thyroid cancer progression in ethnically predisposed 
group. Because of its highly polymorphic nature in 
humans [24–28], a structural/functional defect of DBP 
gene could contribute to thyroid cancer development and 
malignant transformation. 

A recent study demonstrated that vitamin D binds 
with DBP with high affinity under physiologic conditions 
to facilitate its bioavailability [29]. Although DBP has 
both vitamin D-dependent/independent roles in cancer 
development [30–35], vitamin D-dependent DBP 
functions in cancer are well studied with inconclusive 
results. Therefore, we tested whether DBP has the 
vitamin D-independent correlations/functions to thyroid 
cancer oncogenesis. Recent studies have shown that 
the human serum DBP has many physiologically 
important functions, ranging from transporting vitamin 
D metabolites, binding, and sequestering globular actin, 
binding fatty acids to possible roles in inflammation, 
and the immune response [29]. Although DBP is a 
polymorphic protein, functional implications are 
still mostly unknown. DBP showed several biologic 
mechanisms relevant to enhanced cancer risk [32, 35, 
36]. DBP has anti-inflammatory and immunoregulatory 
functions and plays a role in several chronic 
diseases, including breast cancer. For example, when 
deglycosylated by T and B-cell glycosidases, DBP is 
involved in macrophage activation in the form of a DBP-
macrophage activating factor (DBP-MAF) [37]. DBP is 
also involved in apoptosis and angiogenesis [38]. DBP 
level has been correlated with the prognosis of many 
cancers, including TC [30, 34, 35, 39–41]; the higher the 
DBP levels, the better the prognosis. Although DBP is 
an essential protein with multifunctional properties, [28, 
41–47], very few studies are available on its contribution 
to thyroid cancer oncogenesis.

Since DBP gene variants showed differential 
expression across ethnicities [25, 40, 48, 49], DBP 
level in the tumor microenvironment may implicate 
the difference in TC prognosis between Filipino and 
European Americans. In the present study, we determined 
the differential expression of DBP protein in the thyroid 
cancer tissues and correlated it to cancer staging in Filipino 
Americans compared to European Americans. We also 
determined whether Knockdown/gain-in-DBP-function in 
thyroid cancer cell lines further enhanced/decreased cell 
proliferation and invasion capacities. This study concludes 
that the loss-of-DBP-function in the tumor tissues may 
stimulate an intracellular immune-modulating signaling 
pathway in thyroid cancer oncogenesis in Filipino 
Americans.

RESULTS

Differential expression of DBP protein in Filipino 
Americans vs. European Americans

We selected papillary thyroid cancer (PTC) tissues 
to keep the genetic uniformity across the ethnicities. We 
confirmed histological diagnosis by H&E (Figure 1A, 
1C, 1E and 1G), (Supplementary Figure 2A, 2C, 2E, 
2G, 2I, 2K, 2M and 2O). Our demographic data showed 
disparities in sex, BMI, and pTNM staging of thyroid cancer 
(Supplementary Figure 1A–1D), (Supplementary Tables 
1–3) with no age disparities (not shown) between Filipino 
Americans vs. European Americans. We evaluated the DBP 
staining intensity in thyroid cancer tissues derived from 
FA (FPTC) and EA (EATC). A weak (1+, n = 5) moderate 
(2++, n = 40) to strong (3+++, n = 55) DBP positivity was 
observed in most of were observed throughout the FATC 
(Figure 1B and 1D). In contrast, negative (0, n = 90) to weak 
(1+, n = 10) staining patterns were observed throughout the 
FATC (Figure 1F and 1H), Some of them showed very weak 
to total loss of DBP expression (Supplementary Figure 2B, 
2D, 2F, 2H, 2J, 2L, 2N and 2P), and consulted the patient 
chart for demographic data and cancer staging. Out of 100, 
55% of EATC showed (3+++), 40% (2++), and 5% (1+), 
whereas in FATC, 90% showed no (0), 10% with weak (1+) 
(Figure 2A–2B). All were statistically significant (*p < 0.05). 

Correlation of DBP expression to thyroid cancer 
staging in Filipino Americans vs. European 
Americans

In the beginning, we evaluated whether there was 
any correlation of sex in FA vs. EA. To do this, we first 
found females affected in both races. When we compared 
sex and BMI in both ethnicities (Supplementary Figure 
1A and 1B), in both ethnic group, females are affected 
more frequently than males and we found a significantly 
higher BMI (85%) in FA patients compared to EA patients 
(28%). When we compared this to tumor size between FA 
vs. EA, we found a higher percentage of T3/T4 was noted 
in FA than EA patients. More node-positive tumors were 
shown in FA (N1a and N1b) in FA compared to EA patients 
(Supplementary Figure 1C and 1D). We also compared DBP 
staining intensities in FA to cancer staging, which we found 
inversely correlated with staging, i.e., the weaker or no DBP 
staining correlated to advanced staging, whereas in EA 
patient samples, moderate to strong staining was observed 
in early staging of PTC (Figure 3A and 3B). We found no 
correlation of their age/sex/BMI to DBP staining intensity. 
We compared the DBP staining pattern with TC staging; we 
found a significant inverse correlation to advance staging 
in FATC i.e., low (+) to no (0) DBP in advance staging), 
whereas moderate (++) to strong (+++) DBP accumulation 
was observed in early staging of thyroid cancer in EATC 
with stronger staining in tumor vessels, stromal cells, and 
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thyroid cancer tissues. We found no correlation of DBP 
staining with age, sex, or BMI in both ethnicities.

The effects of loss-of-/gain-in-function of DBP 
gene in papillary thyroid cancer cells

We achieved almost 90% knockdown/
overexpression of the DBP gene in PTC cells after sorting 
out the positive clones and confirmed the expression level 
by western blotting (Supplementary Figure 3A), using 
actin as an internal control. After the knockdown, we 
found a time-dependent significantly (*p < 0.05) higher 
cell rescue occurred after DBP-knockdown compared to 
sh-control (Figure 4A); a significantly (**p < 0.01) higher 
cell migration was observed in DBP-knockdown cells 
compared to sh-control cells (Figure 4B). The reverse was 
noted when we overexpressed DBP-gene in the PTC cell 
line (Supplementary Figure 3B), a significantly (*p < 0.05) 
lower cell count was noted compared to plasmid control 
(Figure 5A); cell migration was lowered significantly (*p 
< 0.05) compared to empty vector control (Figure 5B). All 
data were reproduced in triplicates.

DISCUSSION

We demonstrated a differential DBP expression 
in two of the most affected ethnic groups with thyroid 
cancer. They exhibited different amplitudes of cancer 
progression; notably faster progression in Filipino 
Americans with higher recurrence/death rates compared to 
European Americans. In this study, we found statistically 
significant (moderate to strong) DBP staining intensities in 
the cancer tissues from European Americans. In contrast, 
we observed significantly low to no DBP staining in 

the cancer tissues from Filipino Americans. We also 
determined an inverse relationship of DBP expression with 
cancer staging. Significantly low to no DBP staining was 
correlated to advance staging in Filipino American-derived 
cancer tissues, which showed aggressive phenotypes. 
Data showed a moderate to strong DBP expression that 
correlated to early cancer staging in most of the European 
Americans. These data implied that DBP's presence might 
play protective roles in cancer progression in European 
Americans compared to Filipino Americans, supporting 
the aggressive phenotype observed in Filipino Americans. 
Our data is consistent with a meta-analysis of cancers, 
which showed a strong correlation between higher DBP 
levels and better prognosis [26, 50]. DBP has been shown 
to act through direct/indirect pathways to attenuate TC 
growth [30, 31, 33–35, 37, 40, 46, 51] with higher DBP 
levels correlating with a better TC prognosis [30, 31, 35, 
37, 39, 52]. Together, DBP plays a potential role in TC 
health disparities. Although we demonstrated low DBP 
in advanced tumors from Filipino Americans, we need 
to determine the progressive loss of DBP throughout TC 
staging. 

The genomic regulation of DBP is not clearly 
understood. Studies show that estrogen and IL-6 
increase DBP expression and enhance DBP production 
while TGF-β inhibits DBP production [53, 54], are also 
known regulators of TC oncogenesis; therefore, more 
in-depth studies are needed to understand their effect 
on DBP functionality in TC oncogenesis. Additionally, 
the mechanism by which the DBP gene is lost, not well 
understood. The DBP gene, also known as the GC gene, 
gives rise to alleles at different frequencies between 
different ethnic populations. The unique alleles are useful 
tools for anthropological studies that reveal ancestral links 

Figure 1: Differential expression of DBP protein in Filipino Americans vs. European Americans. (A) Hematoxylin & Eosin 
Staining of PTC from the representative tissue samples of EATC-1; (B) immunohistochemistry of DBP in EATC-1; (C) hematoxylin & 
Eosin Staining of PTC from EATC-2; (D) immunohistochemistry of DBP in EATC-2; (E) Hematoxylin & Eosin Staining of PTC from the 
representative tissue samples of FATC-1; (F) immunohistochemistry of DBP in FATC-1; (G) hematoxylin & Eosin Staining of PTC from 
FATC-2; (H) immunohistochemistry of DBP in FATC-2. Red, positive for DBP; blue, DAPI for nuclear stain. DBP, vitamin D binding 
protein; PTC, papillary thyroid cancer; EATC/FATC, European American/Filipino American thyroid Cancer. Magnification, 10×. 
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between populations [24, 55, 56]. These alleles have been 
associated with phenotypic differences in DBP protein 
structure. Although low vitamin D correlated to DBP-
SNP previously [24, 57]; however, a recent study shows 
no association. A systemic review demonstrated that a 
large number of chronic diseases, including cancers, have 
been associated with DBP variants [29]. Therefore, we 
are working on to determine whether a higher frequency 
of DBP-variants associate to thyroid cancer in Filipino 
Americans versus European Americans.

Although DBP is an essential protein with 
multifunctional properties [28, 41–47], very few studies 
are available on its direct contribution to cancer cell 
proliferation, colony formation, and migration. This study 
successfully demonstrated that a stable knockdown of 
DBP enhanced cell proliferation and migration of PTC 

cells. Besides, when we overexpressed the DBP gene in 
the PTC cell line, we found a significant reduction in cell 
proliferation and migration. These data suggest a direct 
functional consequence of DBP-gene loss/gain-in function 
in thyroid cancer cell progression. 

DBP is a multidomain protein. The N-terminal 
domain binds with vitamin D, whereas the C-terminal 
domain contains an O-linked glycosylation site on a 
threonine residue in human DBP. Selective deglycosylation 
of DBP occurs naturally as part of the inflammatory 
response. The resultant molecule, called DBP-MAF acts 
as a potent activator of macrophages [58, 59], which 
plays a role in the treatment of Ehrlich ascites tumor in 
mouse models [60, 61]. Administration of DBP-MAF 
as adjuvant immunotherapy to photodynamic therapy 
of cancer [37, 38], has a synergistic effect on tumor 

Figure 2: Differential DBP expression in FATC versus EATC. (A) a fewer number of DBP positive than negative samples in FATC; 
(B) a larger number of DBP positive samples DBP negative samples in EATC (***p < 0.01, statistically significant) are shown. Moderate 
(++) to stronger (+++) DBP staining correlates to early staging (T1/T2) in EATC, whereas lower (+) to no DBP staining (0) correlates to 
advanced (T3/T4) staging in FATC. DBP, vitamin D binding protein; PTC, papillary thyroid cancer; EATC European American-derived 
thyroid cancer; FATC, Filipino American-derived thyroid cancer. 
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remission using a squamous cell carcinoma model in mice. 
It was hypothesized that DBP-MAF elicited its effect by 
activating macrophages, directly attacking the tumor cells. 
Furthermore, studies have shown that DBP-MAF elicited 
an antiangiogenic function. Systemic administration of 
DBP-MAF can inhibit the rate of tumor growth of various 
solid tumors and, in some cases, can cause regression of 
established tumors. Further characterization and study of 
this promising potential drug (DBP-MAF) may hasten its 
progress to clinical applications for patients with low DBP, 
including but not limited to the treatment of cancer.

In conclusion, we demonstrate that the presence 
or absence of DBP inversely correlates to thyroid cancer 
staging in two ethnicities. We report that most Filipino 
Americans presented with advanced thyroid cancer and 
showed low to no DBP expression. In contrast, European 

Americans with early stage PTC, showed a moderate to 
strong DBP expression, supporting the protective roles 
of DBP in the tumor microenvironment, independent 
of vitamin D. Our in vitro study details the functional 
consequences of loss-of/gain-in-DBP-function in thyroid 
cancer oncogenesis. We conclude that the gain/loss of DBP 
may stimulate immune-modulated signaling pathways in 
thyroid cancer health disparities, which awaits further 
investigation. 

MATERIALS AND METHODS

Tumor samples and patient information

A total of 200 archival thyroid tissues, including 100 
Filipino Americans (FA) and 100 European Americans 

Figure 3: Correlation of DBP staining with staging. (A) A significantly higher number of cases with advanced staging (T3/T4) in 
Filipino Americans compared to European Americans (*p < 0.01, statistically significant). (B) Lower the immunoreactivity of DBP (%), the 
higher the tumor staging in Filipino Americans. DBP, vitamin D binding protein.
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(EA), were obtained from the Departments of Pathology 
at Loma Linda University Medical Center (LLUMC), 
VA Loma Linda Medical Center, and Riverside County 
Regional Medical Center (RCRMC), and Harbor UCLA 
Medical Center. The following are the inclusion criteria of 
this study: all age groups, both sex (18–75 years), collected 
from 2000–2019, with adequate clinical information 
and paraffin blocks for immunohistochemistry. All 
histological diagnoses were confirmed (Papillary thyroid 
cancer) using established morphological criteria using 
routine hematoxylin and eosin (H&E) staining. Patient 
information, including demographic data (age, BMI, 
and sex) (Supplementary Figure 1A and 1B), tumor size, 
extrathyroidal extension, nodal status, distant metastases, 
and disease stage (Supplementary Figure 1C and 1D), 
were obtained by independent chart review by our 
Pathologists (pathological tumor, node, metastasis; pTNM 
staging). All samples were obtained in IRB approved-
studies according to the university and hospital policy 
at both Loma Linda University and Riverside County 
Regional Medical Centers.

Histological examination

All histological diagnoses were confirmed 
using established morphological criteria using routine 
hematoxylin and eosin (H&E) staining as described 
before [1]. We included papillary thyroid cancer (PTC), 
the most common subtype of thyroid cancer (80–90%), to 
maintain genetic uniformity. Patient information, including 
demographic data, tumor size, extrathyroidal extension, 
nodal status, distant metastases, and disease stage, was 
obtained by independent chart review (pathological 
tumor, node, metastasis, pTNM staging) (Supplementary 
Tables 1–3). 

Analysis of DPB expression by 
immunohistochemistry

Formalin-fixed paraffin-embedded tissues 
(FPPE) were cut in 5 mm thickness. The detailed 
deparaffinization and immunohistochemistry protocols 
were described before [62, 63]. Slides were stained using 

Figure 4: Cell counting and invasion assays after si-DBP-knockdown. (A) Cell counting at 0, 24, 48, and 72 hrs. Knock-down, 
a significantly (*p < 0.05) higher cell rescue occurred with si-DBP-knockdown compared to si-scramble control. (B) A significantly higher 
invasion occurred after si-DBP-knock-down compared to si-control at 72 hrs. (**p < 0.01).
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the commercially available anti-DBP antibody (Novus 
Biologicals, CO, USA). The staining was performed as 
follows: the slides were deparaffinized using xylenes 
and graded ethyl alcohols and then rinsed in water. Next, 
antigen retrieval was performed by boiling slides in 
Antigen Retrieval Solution (Dako, Carpinteria, CA, USA; 
pH 6.0) in a microwave oven at maximum power for 4 min 
and at 50% power for 12 min, followed by a 30 min cool-
down and rinsing in wash buffer. Slides were sequentially 
treated with the following reagents in a humidified 
chamber at room temperature: 10% normal rabbit serum 
for 30 min, anti-DBP antibody (1:100 dilution) overnight, 
negative control slide with PBS alone, a hepatic tissue as a 
positive control, and a secondary antibody conjugated with 
Alexa Fluor 555 for 30 min for signal amplification (wash 
buffer steps were included between each step). Nuclear 
staining was performed using DAPI containing mounting 
media for 5 min. Stained slides were then analyzed for 
DBP expression by two experts individually, and they 
were blinded with clinical data. Staining intensities were 
categorized as negative, weak, moderate, and strong (0, 
1+, 2++, 3+++, respectively).

Stained tumor tissues were imaged and analyzed 
with an Olympus FV 1000 laser scanning confocal 
imaging system mounted onto an Olympus 1 × 81 
microscope (Olympus America Inc., PA). Microscopic 
data was acquired with a 20× objective lens. Tumors were 
graded into categories based on staining pattern: a) no (0), 
b) weak (1+), c) moderate (2++), and d) strong (3+++) 
expression. Percent loss was calculated from a total 
number of cases in each ethnic group.

Image acquisition using laser-scanning confocal 
microscopy

The image acquisition were followed and described 
previously in our published article [1]. Stained tumor 
tissues were imaged and analyzed with an Olympus 
FV 1000 laser scanning confocal imaging system 
mounted onto an Olympus 1 × 81 microscope (Olympus 
America Inc., PA, USA). Confocal images of each 
section were analyzed using Image-Pro (v5.9; Media 
Cybernetics, Silver Spring, MD). All the images were 
acquired in z-stack mode (pitch = 0.5 μm; ~15 images/

Figure 5: Cell counting and invasion assays after DBP-upregulation. (A) Cell counting at 0, 24, 48, and 72 hrs. after DBP 
overexpression compared to empty vector used as a control, a significantly lower cell count noted at 48 and 72 hrs. (*p < 0.05; **p < 0.01; 
***p < 0.001), respectively. (B) A significantly lower invasion is shown after DBP-overexpression compared to empty vector at 72 hrs. (***p 
< 0.001). 
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stack, ~300 total images were taken from each section). 
Microscopic data were acquired with a 20× objective 
lens and two investigators (including a pathologist) 
working independently. Both scientists and pathologists 
were blinded, and subsequently, staining intensities 
were matched with the clinicopathological staging 
(Supplementary Tables 1–3). 

We assessed the degree of intensity using computer-
aided image classification and visual scoring by two 
independent pathologists. We compared pathologists 
annotated and software-classified areas of cancer nodules 
and characterized them into the following categories 
based on staining pattern: a) no expression: 0, b) positive 
expression: weak 1+, moderate 2++, and strong 3+++. 
Numbers and intensity of positive cancer cells were counted 
in each field and matched with H&E staining using image 
software in confocal microscopy. Fractions of the negative 
score (0), weakly positive (1+), moderately positive (2++), 
and strongly positive (score 3+++) cell estimated, fractions 
were multiplied with scores and summed, the total being 
H-score. We have counted about 300 cells sampled from 
5–10 fields of vision. The positive staining rate (%) was 
calculated by adding all the scores in each case. Total 
numbers of positive cases were divided by the total number 
of cancer cases (same as for benign cases) and multiplied by 
100. Our scoring system was combined with both intensity 
and distribution of positive staining. Two independent 
observers’ scores were entered into the database using the 
Lotus-1-2-3 approach software and analyzed using the 
weighted k statistics (kw) for interobserver error assessment. 

Assessment of staining patterns

We followed the same protocol as we described 
before [1]. In brief, the presence or absence of staining 
and depth of the color was noted by Z-stack. The number 
of cells showing the positive reaction and the nuclear 
or cytoplasmic pattern of staining was noted. Weak 
(1+) staining; when less than 50% of cells showed low 
fluorescent signal throughout the Z-stacking planes; 
moderate (2++) staining; when moderate signals 
were shown in more than 50% cells in low power and 
Z-stacking planes and finally, Strong (3+++) staining; 
when more than 50% cells showed strong signal in low 
power field as well as z-stacking planes). 

The effects of loss-of-/gain-in-function of DBP 
gene in papillary thyroid cancer cells

Papillary thyroid cancer cell lines were obtained 
from Dr. Frances Karr (Vermont University). Cells were 
used between passages 5 and 10. After resuscitation, 
cell lines were routinely authenticated (once every 6 
months), through cell morphology monitoring, growth 
curve analysis, species verification by isoenzymology 

and karyotyping, identity verification using short tandem 
repeat profiling analysis, and contamination checks., as 
described before [64]. Cells were grown at 37°C and 5% 
CO2 in Dulbecco’s modified Eagle’s medium (DMEM), 
RPMI or DMEM/Ham’s F12 1:1 (Gibco) with 10% 
fetal bovine serum (FBS). DBP cDNA (RG202051), 
knockdown plasmids expressing short hairpin RNA 
(shRNA) targeting DBP (sc-41375-SH), and control 
shRNA plasmids (Santa Cruz Biotech) were purchased. 
Control (shControl) or DBP knockdown (shDBP) 
plasmids were transfected into the PTC cell line using 
shRNA plasmid transfection reagent (Santa Cruz Biotech) 
according to the instruction manual to produce stable 
clones. The stable transfectants were selected in 500 μg/
mL puromycin (Sigma-Aldrich) after 24 hours. At every 
3 days interval the selection medium was replaced, for a 
period of 2 weeks. Subsequently, clones of resistant cells 
were isolated and allowed to proliferate in a medium 
containing puromycin (500 μg/mL). 

Determine DBP-transfection efficiency by 
western blot analysis

Western blot was performed according to the 
method described before [65]. Cells were washed in PBS 
and then lysed in a lysis buffer with 50 mmol/L Tris-HCl 
(pH 7.5), 150 mmol/L NaCl, 1 mmol/L EDTA, 1 mmol/L 
MgCl2, and 0.5% Triton X-100. The lysates were cleared 
by centrifugation at 13,000 × g for 20 minutes at 4°C. 
The lysates were separated by SDS-PAGE, transferred to 
polyvinylidene difluoride membranes, and probed with the 
DBP (ThermoFisher Scientific) and actin (Cell Signaling) 
antibodies. The signals were detected by Li-Cor.

Determine cell proliferation after DBP-
overexpression

The cell culture was performed in a humidified 
incubator (95% air, 5% CO2, 37°C) in 96-well flat-bottomed 
microtiter plates for 24, 48, 72, and 96 hours. At each time 
point, the number of viable cells was counted using the 3-(4, 
5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 
(MTT; Sigma-Aldrich) assay by monitoring the absorbance 
at 570 nm. Cell doubling time was calculated using the 
formula in the technical information for working with 
animal cells in culture, provided by ATCC.

Cell migration and invasion assay after DBP-
transfection

Collagen cell migration assay was performed on 
transfected cells using the QCM 96-well fluorometric 
collagen-based cell invasion assay (Millipore) according 
to the manufacturer’s instructions to measure TC invasion 
as described before [65].
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Statistical analysis

 DBP expression levels were determined by 
contingency table analysis and Chi-square test. Age- and 
sex-adjusted prevalence ratios were obtained with exact 
Poisson regression. Data were analyzed using SPSS 
(version 17.0; SPSS Inc.). Interval variables are presented 
as the mean +/– SEM or median +/– interquartile range. The 
comparisons for statistical significance were performed with 
level of significance set at p < 0.05. STATA v14 (StataCorp 
LLC; College Station, TX, USA) was used for all analyses. 
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