Oncotarget

Research Papers:

No evidence for a shift in pyruvate kinase PKM1 to PKM2 expression during tumorigenesis

Katharina Bluemlein, Nana-Maria Grüning, René G. Feichtinger, Hans Lehrach, Barbara Kofler and Markus Ralser _

PDF  |  HTML  |  How to cite

Oncotarget. 2011; 2:393-400. https://doi.org/10.18632/oncotarget.278

Metrics: PDF 7965 views  |   HTML 9714 views  |   ?  


Abstract

Katharina Bluemlein1, Nana-Maria Grüning1, René G. Feichtinger 2, Hans Lehrach1, Barbara Kofler2 and Markus Ralser1,3

1Max Planck Institute for Molecular Genetics, Berlin, Germany

2Research Program for Receptorbiochemistry and Tumormetabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria

3Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom

Keywords: pyruvate kinase, proteomics, cancer metabolism, alternative splicing, Warburg effect

Received: May 18, 2011; Accepted: May 22, 2011; Published: May 22, 2011;

Correspondence:

Markus Ralser, e-mail:

Abstract

The Warburg effect describes the circumstance that tumor cells preferentially use glycolysis rather than oxidative phosphorylation for energy production. It has been reported that this metabolic reconfiguration originates from a switch in the expression of alternative splice forms (PKM1 and PKM2) of the glycolytic enzyme pyruvate kinase (PK), which is also important for malignant transformation. However, analytical evidence for this assumption was still lacking. Using mass spectrometry, we performed an absolute quantification of PKM1 and PKM2 splice isoforms in 25 human malignant cancers, 6 benign oncocytomas, tissue matched controls, and several cell lines. PKM2 was the prominent isoform in all analyzed cancer samples and cell lines. However, this PKM2 dominance was not a result of a change in isoform expression, since PKM2 was also the predominant PKM isoform in matched control tissues. In unaffected kidney, lung, liver, and thyroid, PKM2 accounted for a minimum of 93% of total PKM, for 80% - 96% of PKM in colon, and 55% - 61% of PKM in bladder. Similar results were obtained for a panel of tumor and non-transformed cell lines, where PKM2 was the predominant form. Thus, our results reveal that an exchange in PKM1 to PKM2 isoform expression during cancer formation is not occurring, nor do these results support conclusions that PKM2 is specific for proliferating, and PKM1 for non-proliferating tissue.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 278