Priority Research Papers:
Combined inhibition of PIM and CDK4/6 suppresses both mTOR signaling and Rb phosphorylation and potentiates PI3K inhibition in cancer cells
PDF | Full Text | Supplementary Files | How to cite | Press Release | Podcast
Metrics: PDF 1965 views | Full Text 6285 views | ?
Abstract
Lacey M. Litchfield1, Karsten Boehnke2, Manisha Brahmachary2, Cecilia Mur3, Chen Bi1, Jennifer R. Stephens1, J. Michael Sauder4, Sonia M. Gutiérrez3, Ann M. McNulty1, Xiang S. Ye5, Wenjuan Wu1, María José Lallena3, Xueqian Gong1, Farhana F. Merzoug1, Valerie M. Jansen1 and Sean G. Buchanan1
1 Eli Lilly and Company, Indianapolis, IN, USA
2 Eli Lilly and Company, New York, NY, USA
3 Eli Lilly and Company, Alcobendas, Madrid, Spain
4 Eli Lilly and Company, San Diego, CA, USA
5 Eli Lilly and Company, Shanghai, China
Correspondence to:
Sean G. Buchanan, | email: | [email protected] |
Keywords: abemaciclib; CDK4/6; PIM; mTOR; S6
Received: November 04, 2019 Accepted: March 14, 2020 Published: April 28, 2020
ABSTRACT
Aberrant activation of mitogenic signaling pathways in cancer promotes growth and proliferation of cells by activating mTOR and S6 phosphorylation, and D-cyclin kinases and Rb phosphorylation, respectively. Correspondingly, inhibition of phosphorylation of both Rb and S6 is required for robust anti-tumor efficacy of drugs that inhibit cell signaling. The best-established mechanism of mTOR activation in cancer is via PI3K/Akt signaling, but mTOR activity can also be stimulated by CDK4 and PIM kinases. In this study, we show that the CDK4/6 inhibitor abemaciclib inhibits PIM kinase and S6 phosphorylation in cancer cells and concurrent inhibition of PIM, CDK4, and CDK6 suppresses both S6 and Rb phosphorylation. TSC2 or PIK3CA mutations obviate the requirement for PIM kinase and circumvent the inhibition of S6 phosphorylation by abemaciclib. Combination with a PI3K inhibitor restored suppression of S6 phosphorylation and synergized to curtail cell growth. By combining abemaciclib with a PI3K inhibitor, three pathways (Akt, PIM, and CDK4) to mTOR activation are neutralized, suggesting a potential combination strategy for the treatment of PIK3CA-mutant ER+ breast cancer.
All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 27539