Research Papers:
NOTCH1 signaling in oral squamous cell carcinoma via a TEL2/SERPINE1 axis
PDF | Full Text | Supplementary Files | How to cite | Press Release
Metrics: PDF 1929 views | Full Text 4774 views | ?
Abstract
Vasiliki Salameti1,*, Priyanka G. Bhosale1,*, Ashley Ames-Draycott1, Kalle Sipilä1 and Fiona M. Watt1
1 Centre for Stem Cells and Regenerative Medicine, King's College London, Tower Wing, Guy's Hospital, London, UK
* These authors contributed equally to this work
Correspondence to:
Fiona M. Watt, | email: | [email protected] |
Keywords: oral squamous cell carcinoma (OSCC);
Received: April 29, 2019 Accepted: October 21, 2019 Published: November 26, 2019
ABSTRACT
Inactivating mutations in the EGF-like ligand binding domain of NOTCH1 are a prominent feature of the mutational landscape of oral squamous cell carcinoma (OSCC). In this study, we investigated NOTCH1 mutations in keratinocyte lines derived from OSCC biopsies that had been subjected to whole exome sequencing. One line, SJG6, was found to have truncating mutations in both NOTCH1 alleles, resulting in loss of NOTCH1 expression. Overexpression of the NOTCH1 intracellular domain (NICD) in SJG6 cells promoted cell adhesion and differentiation, while suppressing proliferation, migration and clonal growth, consistent with the previously reported tumour suppressive function of NOTCH1 in OSCC. Comparative gene expression profiling identified SERPINE1 as being downregulated on NICD overexpression and predicted an interaction between SERPINE1 and genes involved in cell proliferation and migration. Mechanistically, overexpression of NICD resulted in upregulation of ETV7/TEL2, which negatively regulates SERPINE1 expression. Knockdown of SERPINE1 phenocopied the effects of NICD overexpression in culture. Consistent with previous studies and our in vitro findings, there were inverse correlations between ETV7 and SERPINE1 expression and survival in OSCC primary tumours. Our results suggest that the tumour suppressive role of NOTCH1 in OSCC is mediated, at least in part, by inhibition of SERPINE1 via ETV7.
All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 27306