Oncotarget

Research Papers:

STK405759 as a combination therapy with bortezomib or dexamethasone, in in vitro and in vivo multiple myeloma models

Gabriela Rozic _, Lena Paukov, Ziv Cohen, Irit Shapira, Adrian Duek, Ohad Bejamini, Abraham Avigdor, Arnon Nagler, Igor Koman and Merav Leiba

PDF  |  HTML  |  Supplementary Files  |  How to cite

Oncotarget. 2018; 9:31367-31379. https://doi.org/10.18632/oncotarget.25825

Metrics: PDF 1334 views  |   HTML 2025 views  |   ?  


Abstract

Gabriela Rozic1,2, Lena Paukov2, Ziv Cohen2, Irit Shapira1, Adrian Duek2,3, Ohad Bejamini2,3, Abraham Avigdor2,3, Arnon Nagler2,3, Igor Koman1 and Merav Leiba4

1Ariel University, Ariel, Israel

2Division of Hematology and BMT, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel

3Tel Aviv University, Sackler School of Medicine, Tel Aviv, Israel

4Division of Hematology, Assuta, Ashdod University Hospital, Faculty of Health Sciences, Ben Gurion University of the Negev, Beersheba, Israel

Correspondence to:

Gabriela Rozic, email: [email protected]

Keywords: multiple myeloma; STK405759; dexamethasone; bortezomib; survival

Received: January 26, 2018     Accepted: July 12, 2018     Published: July 31, 2018

ABSTRACT

Multiple myeloma (MM) remains an incurable hematological malignancy. Combination regimens of conventional and novel drugs have improved patient’s survival. However, most patients inevitably relapse and become refractory to the current therapeutic armamentarium.

We investigated the efficacy of combining the microtubule-targeting agent STK405759 with dexamethasone or bortezomib in vitro and in vivo.

STK405759 combined with dexamethasone or bortezomib had synergistic cytotoxic activity in RPMIS, CAG and MM1.S human MM cell lines through activation of caspase 2, 3, 8, 9 and PARP. These treatments remained cytotoxic in the presence of bone marrow stroma cells. In other MM cells, including cells resistant to vincristine, melphalan, mitoxantrone or dexamethasone, these combinations decreased significantly survival as compared to single agents.

In in vivo studies, STK405759 disrupted existing blood vessels in xenograft tumors, acting not only as a cytotoxic agent but also as an anti-angiogenic drug. Mice treated with STK405759 in combination with dexamethasone or bortezomib resulted in greater tumor growth inhibition, increased overall response and prolonged survival as compared to as compared to BTZ or DEXA alone. Their anticancer activity was mediated by activation of apoptosis and reduction of tumor microvessel density.

These preclinical studies provide the rationale for future clinical trials of STK405759, dexamethasone and bortezomib combinations to improve the outcome of multiple myeloma patients.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 25825