Oncotarget

Research Papers:

STK3 is a therapeutic target for a subset of acute myeloid leukemias

Aylin Camgoz, Maciej Paszkowski-Rogacz, Shankha Satpathy, Martin Wermke, Martin V. Hamann, Malte von Bonin, Chunaram Choudhary, Stefan Knapp and Frank Buchholz _

PDF  |  HTML  |  Supplementary Files  |  How to cite

Oncotarget. 2018; 9:25458-25473. https://doi.org/10.18632/oncotarget.25238

Metrics: PDF 2112 views  |   HTML 3157 views  |   ?  


Abstract

Aylin Camgoz 1, Maciej Paszkowski-Rogacz1, Shankha Satpathy2, Martin Wermke3,4, Martin V. Hamann1,9, Malte von Bonin3,5, Chunaram Choudhary2, Stefan Knapp6 and Frank Buchholz1,5,7,8

1Universitäts KrebsCentrums Dresden, Medical Systems Biology, Medical Faculty, Technische Universität Dresden, Dresden, Germany

2The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark

3Department of Internal Medicine I, Medical Faculty, Technische Universität Dresden, Dresden, Germany

4Early Clinical Trial Unit, Medical Faculty, Technische Universität Dresden, Dresden, Germany

5German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site, Dresden, Germany

6Department of Pharmaceutical Chemistry, University of Frankfurt, Frankfurt, Germany

7Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany

8National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany

9Current address: Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany

Correspondence to:

Frank Buchholz, email: [email protected]

Keywords: AML; personalized medicine; UCN-01; STK3; mitosis

Received: December 17, 2017     Accepted: April 06, 2018     Published: May 22, 2018

ABSTRACT

Acute myeloid leukemia (AML) is characterized by uncontrolled proliferation and accumulation of immature myeloblasts, which impair normal hematopoiesis. While this definition categorizes the disease into a distinctive group, the large number of different genetic and epigenetic alterations actually suggests that AML is not a single disease, but a plethora of malignancies. Still, most AML patients are not treated with targeted medication but rather by uniform approaches such as chemotherapy. The identification of novel treatment options likely requires the identification of cancer cell vulnerabilities that take into account the different genetic and epigenetic make-up of the individual tumors. Here we show that STK3 depletion by knock-down, knock-out or chemical inhibition results in apoptotic cells death in some but not all AML cell lines and primary cells tested. This effect is mediated by a premature activation of cyclin dependent kinase 1 (CDK1) in presence of elevated cyclin B1 levels. The anti-leukemic effects seen in both bulk and progenitor AML cells suggests that STK3 might be a promising target in a subset of AML patients.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 25238