Research Papers:
Parenclitic networks for predicting ovarian cancer
PDF | HTML | Supplementary Files | How to cite
Metrics: PDF 1573 views | HTML 2809 views | ?
Abstract
Harry J. Whitwell1, Oleg Blyuss2, Usha Menon3, John F. Timms3 and Alexey Zaikin3,4
1Chemical Engineering, Imperial College London, London, United Kingdom
2Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, United Kingdom
3Institute for Women’s Health, University College London, London, United Kingdom
4Department of Mathematics, University College London, London, United Kingdom
Correspondence to:
Harry J. Whitwell, email: [email protected]
John F. Timms, email: [email protected]
Alexey Zaikin, email: [email protected]
Keywords: parenclitic; network; ovarian cancer; biomarker; serum
Received: March 13, 2018 Accepted: April 07, 2018 Published: April 27, 2018
ABSTRACT
Prediction and diagnosis of complex disease may not always be possible with a small number of biomarkers. Modern ‘omics’ technologies make it possible to cheaply and quantitatively assay hundreds of molecules generating large amounts of data from individual samples. In this study, we describe a parenclitic network-based approach to disease classification using a synthetic data set modelled on data from the United Kingdom Collaborative Trial of Ovarian Cancer Screening (UKCTOCS) and serological assay data from a nested set of samples from the same study. This approach allows us to integrate quantitative proteomic and categorical metadata into a single network, and then use network topologies to construct logistic regression models for disease classification. In this study of ovarian cancer, comprising of 30 controls and cases with samples taken <14 months to diagnosis (n = 30) and/or >34 months to diagnosis (n = 29), we were able to classify cases with a sensitivity of 80.3% within 14 months of diagnosis and 18.9% in samples exceeding 34 months to diagnosis at a specificity of 98%. Furthermore, we use the networks to make observations about proteins within the cohort and identify GZMH and FGFBP1 as changing in cases (in relation to controls) at time points most distal to diagnosis. We conclude that network-based approaches may offer a solution to the problem of complex disease classification that can be used in personalised medicine and to describe the underlying biology of cancer progression at a system level.
All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 25216