Research Papers:
Targeted nanoparticle delivery of therapeutic antisense microRNAs presensitizes glioblastoma cells to lower effective doses of temozolomide in vitro and in a mouse model
Metrics: PDF 2496 views | HTML 6425 views | ?
Abstract
Meenakshi Malhotra1, Thillai Veerapazham Sekar2, Jeyarama S. Ananta1, Rammohan Devulapally2, Rayhaneh Afjei1, Husam A. Babikir1, Ramasamy Paulmurugan2 and Tarik F. Massoud1
1Laboratory for Experimental and Molecular Neuroimaging (LEMNI), Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA
2Cellular Pathway Imaging Laboratory (CPIL), Molecular Imaging Program at Stanford, Stanford University School of Medicine, Palo Alto, CA 94305, USA
Correspondence to:
Tarik F. Massoud, email: [email protected]
Ramasamy Paulmurugan, email: [email protected]
Keywords: antagomiR; chemotherapy; microRNA-21; microRNA-10b; PLGA
Received: February 09, 2018 Accepted: March 28, 2018 Published: April 20, 2018
ABSTRACT
Temozolomide (TMZ) chemotherapy for glioblastoma (GBM) is generally well tolerated at standard doses but it can cause side effects. GBMs overexpress microRNA-21 and microRNA-10b, two known oncomiRs that promote cancer development, progression and resistance to drug treatment. We hypothesized that systemic injection of antisense microRNAs (antagomiR-21 and antagomiR-10b) encapsulated in cRGD-tagged PEG-PLGA nanoparticles would result in high cellular delivery of intact functional antagomiRs, with consequent efficient therapeutic response and increased sensitivity of GBM cells to lower doses of TMZ. We synthesized both targeted and non-targeted nanoparticles, and characterized them for size, surface charge and encapsulation efficiency of antagomiRs. When using targeted nanoparticles in U87MG and Ln229 GBM cells, we showed higher uptake-associated improvement in sensitivity of these cells to lower concentrations of TMZ in medium. Co-inhibition of microRNA-21 and microRNA-10b reduced the number of viable cells and increased cell cycle arrest at G2/M phase upon TMZ treatment. We found a significant increase in expression of key target genes for microRNA-21 and microRNA-10b upon using targeted versus non-targeted nanoparticles. There was also significant reduction in tumor volume when using TMZ after pre-treatment with loaded nanoparticles in human GBM cell xenografts in mice. In vivo targeted nanoparticles plus different doses of TMZ showed a significant therapeutic response even at the lowest dose of TMZ, indicating that preloading cells with antagomiR-21 and antagomiR-10b increases cellular chemosensitivity towards lower TMZ doses. Future clinical applications of this combination therapy may result in improved GBM response by using lower doses of TMZ and reducing nonspecific treatment side effects.
![Creative Commons License](/images/80x15.png)
PII: 25135