Oncotarget

Research Papers:

Persistent DNA strand breaks induce a CAF-like phenotype in normal fibroblasts

Arnaud J. Legrand, Mattia Poletto, Daniela Pankova, Elena Clementi, John Moore, Francesc Castro-Giner, Anderson J. Ryan, Eric O’Neill, Enni Markkanen and Grigory L. Dianov _

PDF  |  HTML  |  Supplementary Files  |  How to cite

Oncotarget. 2018; 9:13666-13681. https://doi.org/10.18632/oncotarget.24446

Metrics: PDF 2465 views  |   HTML 4043 views  |   ?  


Abstract

Arnaud J. Legrand1,*, Mattia Poletto1,*, Daniela Pankova1, Elena Clementi2, John Moore1, Francesc Castro-Giner3, Anderson J. Ryan1, Eric O’Neill1, Enni Markkanen2,# and Grigory L. Dianov1,4,5,#

1CRUK & MRC Oxford Institute for Radiation Oncology, University of Oxford, Department of Oncology, Old Road Campus Research Building, OX37DQ Oxford, UK

2Institute of Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, Zürich 8057, Switzerland

3Functional Genomics Center Zürich, University of Zürich, Zürich 8057, Switzerland

4Institute of Cytology and Genetics, Russian Academy of Sciences, Novosibirsk 630090, Russian Federation

5Novosibirsk State University, Novosibirsk 630090, Russian Federation

*Co-first author

#Co-senior author

Correspondence to:

Grigory L. Dianov, email: [email protected]

Enni Markkanen, email: [email protected]

Keywords: tumour microenvironment; cancer-associated fibroblasts; base excision repair; tumour stroma; midostaurin

Received: October 11, 2017     Accepted: January 30, 2018     Published: February 07, 2018

ABSTRACT

Cancer-associated fibroblasts (CAFs) are an emerging target for cancer therapy as they promote tumour growth and metastatic potential. However, CAF targeting is complicated by the lack of knowledge-based strategies aiming to selectively eliminate these cells. There is a growing body of evidence suggesting that a pro-inflammatory microenvironment (e.g. ROS and cytokines) promotes CAF formation during tumorigenesis, although the exact mechanisms involved remain unclear. In this study, we reveal that a prolonged pro-inflammatory stimulation causes a de facto deficiency in base excision repair, generating unrepaired DNA strand breaks and thereby triggering an ATF4-dependent reprogramming of normal fibroblasts into CAF-like cells. Based on the phenotype of in vitro-generated CAFs, we demonstrate that midostaurin, a clinically relevant compound, selectively eliminates CAF-like cells deficient in base excision repair and prevents their stimulatory role in cancer cell growth and migration.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 24446