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INTRODUCTION

Colon adenocarcinoma (COAD), as a kind of 
colorectal cancer, has traditionally been treated surgically  
[1]. However, many cases of colon cancer are systemic at 
the time of diagnosis, and apparently curative surgery is 
turned out to be at a late stage. But, tumor recurrence as 
a consequence of circulating tumor cells is unmanageable 
before the surgery [2–4]. It has been recognized that cancer 
is associated with the genetic, genomic and epigenetics 
changes [5, 6]. Meanwhile, a demonstrative influence 
of the host immune response on tumour invasion, 
recurrence and metastasis has come from analyses of the 
in situ immune components and how these components 
are organized within human tumours. Indeed, immune 
infiltrates are heterogeneous between tumour types, and 
are very diverse from patient to patient. All immune cell 
types may be found in a tumour, including macrophages, 

dendritic cells, mast cells, natural killer (NK) cells, naive 
and memory lymphocytes, B cells and effector T cells 
(including various subsets of T cell: T helper cells, T 
helper 1 (TH1) cells, TH2 cells, TH17 cells, regulatory T 
(TReg) cells, T follicular helper (TFH) cells and cytotoxic 
T cells). These immune cells can be located in the core 
(the centre) of the tumour, in the invasive margin or in the 
adjacent tertiary lymphoid structures (TLS) [7]. In some 
cases, immune cells constitute an additional, prominent 
component of the host response to cancer, but their 
participation in tumour pathogenesis remains incompletely 
understood [8]. Therefore, finding genes correlated with 
immunogenes for COAD recurrence is becoming more 
and more important.

A large number of COAD genomic data are 
emerging and promoting colon cancer research. The 
Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.
gov/) gave comprehensive molecular portraits of human 
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ABSTRACT
Colon adenocarcinoma is the third most common cancer with high risk of 

recurrence and deteriorative consequences. Given the importance of immune genes in 
tumor regulation and cancer immunotherapy, there is a need to comprehensively profile 
the immunoregulatory genes from multiple types of colon cancer patient genomic data 
for discovering important associations and potential therapeutic targets of colon cancer 
recurrence. We used publicly available colon tumor tissue genomic data from The Cancer 
Genome Atlas database and immune genes data from innateDB database in this study. 
We derived the immune genes profiles by exploring multiple genomic profiles (gene 
expression, clinical and somatic mutation) in colon cancer. Some of the synthetic lethal 
genes we identified, such as CASP14, MS4A6E, KIR2DL1, KIR3DL1, KIR2DL3, CCL1, 
IL36B, FOXO3, POU2F1, SMAD3, HOXA9, PACS1, PROM1, DIDO1, SRC, CBFA2T2, NCOA6, 
PGAM1 and PROC, have been suggested to be potential targets correlated with immune 
genes for colon cancer recurrence treatment. Moreover, TLR2 could be promisingly 
new early stage indicator for colon adenocarcinoma recurrence. This is a systematic 
study that combines three different types of genomic data to molecularly characterize 
colon cancer and aims to identify potential targets for colon adenocarcinoma therapy. 
Meanwhile, the integrative analysis of immune genes for colon cancer could assist in 
identifying potential new symbols for colon adenocarcinoma recurrence.
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colon cancer by integrating various types of “omics” 
data including genomic DNA copy number arrays, 
DNA methylation, exome sequencing, messenger RNA 
arrays, microRNA (miRNA) sequencing, and reverse-
phase protein arrays. The related investigations have 
greatly advanced our understanding of colon cancer in 
molecular profiles [9], although translation of genomic 
findings into clinical applications remains challenging. 
The high-quality TCGA primary colon tumor samples 
and their comprehensive molecular profiles could be an 
invaluable source of information for molecular exploration 
of colon cancer and discovery of new treatment targets. 
Immune gene list from InateDB, as a manually-curated 
knowledgebase of the genes, proteins, and particularly, 
the interactions and signaling responses involved in 
mammalian innate immunity [10], include Immport [11], 
Immunogenetic Related Information Source (IRIS), Septic 
Shock Group, MAPK/NFKB Network, Calvano et al., 
Nature 2005 [12], and Immunome Database. Considering 
the dependability of all immune genes, we selected 
immune genes that are distributed in more than two above 
gene lists, and then incorporated the innate immunity 
genes that are not distributed in other gene lists. 

Microsatellite instability (MSI) is caused by a 
defect in the mismatch repair (MMR) machinery, one of 
the main mechanisms responsible for recognizing and 
repairing errors in newly synthesized DNA. MSI results 
from biallelic inactivation of one of the MMR genes [13]. 
MSI, as one of immunogenic subtype in Colorectal cancer, 
has been exploded in research paper [14, 15]. Mutation 
burden defined by the number of mutated genes in every 
cancer sample mirrors the degree of mutation [16]. The 
relationship of mutations and MSI or gene expression 
level and MSI need to be analyzed.

In this study, we explored immune genes correlated 
with COAD recurrence by survival analyses based on 
immunogene mutations profiles. We analyzed immune 
gene somatic mutation and gene expression data to identify 
potential SL genes for above immune genes, evaluated 
MSI status, mutation burden and compared the relation 
of MSI with somatic mutation and gene expression level. 
We also identified potential sign for recurrent COAD by 
immunogene mutations and clinical profiles and verified 
the results by PubMed references (http://www.ncbi.nlm.
nih.gov/entrez/query.fcgi?db = PubMed).

RESULTS

By using Gene Set Enrichment Analysis (GSEA) 
software [17], we identified 10 canonical pathways 
significantly associated with this 1219-gene set that have 
significant differences between recurrent cancer and 
normal samples. We obtained 10 pathways correlated 
with 1219 Immune genes involved in COAD by a 
threshold of adjusted P-values (FDR)  <  0.05 (Figure 
1 and Supplementary Table 1), such as Genes involved 

in Immune System [18], Matrisome and Matrisome 
Associated [19, 20], Innate Immune System, Complement 
and Coagulation Cascades, Adaptive Immune System, 
Pathways in cancer, Hemostasis, Hematopoietic cell 
lineage, Cytokine–cytokine receptor interaction [21].

We compared disease-free survival (DFS) between 
immune genes mutated and wildtype cancer samples, both 
of more than 3 samples in COAD. Finally, 69 Genes were 
found that all have a worse DFS prognosis, and then are 
bad for recurrent COAD patients to survive. We plot DFS 
curves for immune gene-muted and gene-wildtype cancer 
samples with significant poor prognosis by a threshold of 
adjusted P-value (FDR)  < 0.05 (Figure 2).

According to the MSI status, we divided all recurrent 
COAD samples and all non-recurrent cancer samples 
into three groups, including MSI group, Microsatellite 
stability (MSS) group, and non-available group. Then, we 
concluded that the COAD recurrence has no correlation 
with the stability of microsatellites.

DNA mutation types were classified by TCGA 
mutation dataset, which included Silent, Missense_ 
Mutation, Frame_Shift_Del, Nonsense_Mutation, In_
Frame_Ins, Splice_Site, Frame_Shift_Ins, In_Frame_Del 
(Figure 3 and Supplementary Table 2). We found that 
higher mutation burden of recurrent cancer samples 
concentrated in missense mutation except for silent 
mutation. 

Based on the TCGA data, the stability of 
microsatellites has no significant correlation with cancer 
recurrence. Then, we concluded that immunogene cell 
adhesion molecule L1-like (CHL1, P-value = 0.019, odds 
ratio = 7.644) and insulin receptor substrate 1 (IRS1, 
P-value = 0.026, odds ratio = Inf (denominator is zero)) 
somatic mutation have correlation with the MSI and MSS. 
At the same time, the differences of expression levels of 
the 69 immunogenes in MSI cancer samples compared 
to those in MSS cancer samples were shown in Table 1 
(Supplementary Table 3). 

Comparison expression level of immune genes that 
are correlated with recurrent COAD in recurrent cancer 
and normal samples, which shows that 31 immune genes 
have significant difference between the two groups (FDR  
<  0.05, and fold change > 1.5). The FDR was estimated 
using the method of Benjami and Hochberg [22]. Heat 
map of 31 immune genes expression (Figure 4 and 
Supplementary Table 4) shows the expression trend in 
recurrent cancer and normal samples. 

Figure 4. Differential gene expression levels of 
immune genes in recurrent cancer compared to those in 
normal samples. The columns represent recurrent cancer 
samples (63), normal samples (41) without cancer, and 
the rows represent immune genes. The red color indicates 
that a gene is more highly expressed, and the green color 
indicates that it isn’t.

We verified the 31 immune genes correlated with 
COAD recurrence by using the PubMed database. All 
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research papers related to the 31 genes provided direct 
or indirect evidences suggesting that COAD recurrence 
is affected by immunogenes (Table 2). We found that the 
related experiments of the 12 immune genes have been 
published in research papers. 

We identified a set of candidate synthetic lethal (SL) 
genes [38] for 31 immune genes from above results. 19 SL 
genes for 6 immune genes have been found in mutation 
data (Table 3). 

Moreover, we compared IC50 (drug concentration 
that reduces viability by 50%) values between immune 
genes that identified for 19 SL genes’ higher-expression-
level and lower-expression-level cancer cell lines for 

each of the 265 compounds mentioned above. We found 
that GULP1 had significantly lower IC50 values in 
lower-expression-level cancer cell lines than in higher- 
expression-level cancer cell lines, and other 4 immune 
genes turned out to be the reverse (P-value <  0.05 and top 
5 ascending order by FDR) (Table 4 and Supplementary 
Table 5). This indicates that immune genes expression 
levels of the cancer cell lines significantly influence the 
sensitivity of these cell-lines to drugs. Table 4 lists drug 
sensitivity differences in differential expression levels of 
immune genes obtained by the Cancer Cell Line Project.

We compared the immune gene mutation rates 
among different clinical phenotypes of cancer patients 

Table 1: The differences of expression levels of gene-set from 69 immunogenes in MSI cancer 
samples compared to those in MSS cancer samples

Symbol Description P-value Log2(Fold changea)
IL17C interleukin 2.25E-11 3.168963

ATP5A1

ATP synthase, H+ 
transporting, mitochondrial 
F1 complex, alpha subunit 1, 
cardiac muscle

4.03E-06 0.868329

CD99L2 CD99 molecule-like 2 0.001053 −0.68528
PGM5 phosphoglucomutase 5 0.001941 −2.1586

afold change = mean MSI cancer samples expression levels/mean MSS cancer samples expression levels. 

Figure 1: Important biological functions associated with 1219 immune genes.
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Table 2: The evidences for verifying the relationship between immunogenes that are correlated 
with CAOD recurrence and have significant differences between in recurrent cancer samples and 
in normal samples with cancer recurrence
Symbol Description Reference

RIPK1 receptor (TNFRSF)-interacting serine-
threonine kinase 1 [23–25]

CHL1 cell adhesion molecule L1-like [26]

CEBPβ CCAAT/enhancer binding protein (C/
EBP), beta [27]

CHD7 Chromodomain Helicase DNA Binding 
Protein 7 [28]

CYSLTR1 cysteinyl leukotriene receptor 1 [29]
CD96 CD96 Molecule [30]

HLA-C major histocompatibility complex, class 
I, C [31]

IL17C interleukin 17C [32]

NLRC3 NLR family, CARD domain containing 
3 [33, 34]

IL18R1 interleukin 18 receptor 1 [35]

GULP1 GULP, engulfment adaptor PTB domain 
containing 1 [36]

EOMES eomesodermin [37]

Figure 2: Kaplan–Meier survival curves, which show significant disease-free survival (DFS) time differences between 
immune gene-mutated and immune gene-wildtype cancer patients (log-rank test, FDR <  0.05).
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using Fisher’s Exact Test. Stage phenotype that represents 
tumor size and spread was divided into two classes: early 
stage (Stage I-II) vs. late stage (Stage III-IV) [50]. Only 
gene TLR2 mutation was correlated with stages, and its 

mutation rate was higher in early stage than late stage 
subjects (unadjusted P-value = 0.041, odds ratio  = Inf). 
Gene toll-like receptor 2 (TLR2) mutation rate is 3.7%, 
that is, 8 samples, which include Missense Mutation (3), 

Table 3: The 19 genes that are potentially synthetic lethal for immune genes that are correlated 
with COAD recurrence

Symbolb Description Symbolc Pathwayd Druge

CASP14 caspase 14 ATP5A1, IL18R1 NA Apoptosis Activator 2, Boc-D-FMK,PAC-
1,MDL 28170, PD 150606

MS4A6E membrane spanning 
4-domains A6E ATP5A1 NA NA

KIR2DL1

killer cell 
immunoglobulin-like 

receptor, two domains, 
long cytoplasmic tail, 1

IL18R1,CD96 Immune System, Adaptive 
Immune System NA

KIR3DL1

killer cell 
immunoglobulin-like 

receptor, three domains, 
long cytoplasmic tail, 1

IL18R1 Immune System NA

KIR2DL3

killer cell 
immunoglobulin-like 

receptor, two domains, 
long cytoplasmic tail, 3

IL18R1 Immune System NA

CCL1 chemokine (C-C motif) 
ligand 1 IL18R1 NA NA

IL36B interleukin 36, beta GULP1 Immune System, NA

FOXO3 forkhead box O3 LYL1, SPP1 Signaling by PDGF, Signal 
Transduction NA

POU2F1 POU class 2 homeobox 1 LYL1 NA NA

SMAD3 SMAD family member 3 LYL1 NA NA

HOXA9 homeobox A9 LYL1 NA NA

PACS1 phosphofurin acidic 
cluster sorting protein 1 LYL1 NA Mannose 6-phosphate

PROM1 prominin 1 LYL1 NA NA

DIDO1 death inducer-obliterator 
1 SPP1 NA NA

SRC
SRC proto-oncogene, 
non-receptor tyrosine 

kinase
SPP1

Signaling by PDGF, Signal 
Transduction, Membrane 
Trafficking Signaling by 

GPCR

Dasatinib, bosutinib, ponatinib, Nintedanib, 
Bevacizumab,   

Bosulif, Iclusig, Ofev, Sprycel, Adenosine 
triphosphate

CBFA2T2
core-binding factor, runt 
domain, alpha subunit 2; 

translocated to, 2
SPP1 NA NA

NCOA6 nuclear receptor 
coactivator 6 SPP1 NA Cholecalciferol

PGAM1 phosphoglycerate mutase 
1 (brain) SPP1 NA Phosphoric acid, Water

PROC
protein C (inactivator of 
coagulation factors Va 

and VIIIa)
SPP1

Cell surface interactions 
at the vascular wall, 

Post-translational protein 
modification

Sodium Tetradecyl Sulfate, 
Menadione,Warfarin, Antihemophilic Factor 

(Recombinant), Drospirenone, Ethinyl 
Estradiol, Norelgestromin,Phenprocoumon, 

calcium
bSL gene symbol for immune genes, cImmune genes symbol, dPathways to which the kinase gene is related, eDrugs that have been approved, *Data on 
Pathways and Compounds from the GeneCards (www.genecards.org), KEGG (www.genome.jp/kegg/), REACTOME (www.reactome.org/)
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Frame Shift Insert Mutation (2), Nonsense Mutation (1) 
and Silent Mutation (2). 

DISCUSSION

In this study, we performed extensive analyses of 
immune gene mutation, gene expression, and clinical data 
from COAD datasets in TCGA. We computed the somatic 
mutation burden, MSI status and correlation with each other 
of 69 immunogenes, verified the immunogenes correlated 
with COAD recurrence by literature, identified potential 
druggable SL partners of immune genes that are correlated 
with COAD recrudesce, analyzed correlation between early 
and late stages. 

Druggable SL gene partners that were identified for 
immune genes that are correlated with COAD recidivation 
may yield insights into the personalized treatment of patients 
with immune gene-mutated cancers, since no druggable 
immune gene mutants. An example of successful application 
of the synthetic lethality approach is the targeting of cancers 
with dysfunction of the breast-cancer susceptibility genes 1 
and 2 (BRCA1 and BRCA2) by poly(adenosine diphosphate 
ADP-ribose) polymerase (PARP) inhibitors [51]. In the 
present study, we identified potential immune genes SL 
partners based on the assumption that mutation of SL gene 
has more effects on the expression of immune genes in SL 
gene-mutated cancers than those in both SL gene-wildtype 
cancers and normal tissue. Moreover, we validated the 
correlation between drug sensitivity and gene expression 
by exploring the pharmacogenomic data from the Cancer 
Cell Line Project. We identified a threshold of P-value 
< 0.05 in the result of different sensitivity based on the 
pharmacogenomic data. Drugs had significant differences 
between higher-expression-level and lower-expression-
level genes. ATP5A1, IL18R1, and SPP1 all have higher 

sensitivity in higher-expression-level than lower- expression-
level. GULP1 and LYL1 all have lower sensitivity in higher-
expression-level than lower-expression-level. CGP-082996 
[52], as inhibitor of CDK4, is the only one drug that has 
lower sensitivity in higher-expression-level than in lower-
expression-level based on different drug sensitivity of 
ATP5A1. We identified that CDK4 expression significantly 
correlates with ATP5A1 expression in COAD (Pearson 
product-moment correlation, P-value < 0.05). The result is 
based on COAD dataset from TCGA indicating that CDK4 
expression positively correlates with ATP5A1expression 
(P-value = 0.004, Correlation coefficient  = 0.221), and then 
explains the reason of lower drug sensitivity in ATP5A1 
higher-expression-level. 

TLR2 plays an important role in Lewis lung 
carcinoma metastatic growth [53]. Recurrence pattern 
of COAD includes metastatic recurrence [54] and 
disseminated recurrence [55]. TLR2 is also required for 
rapid inflammasome activation [56, 57] and is identified 
as an indication gene correlated with cancer stages and 
cancer recurrence by this study. TLR2 interacts with a 
number of gene products (proteins) (Figure 5, generated 
by the BioGRID [58]). For example, autosomal recessive 
deficiencies of IRAK1 and MYD88 impair Toll-like 
receptor (TLR) to recurrent life-threatening bacterial 
diseases [59]. TIRAP is dispensable in TLR2 signalling at 
high ligand concentrations in macrophages and dendritic 
cells, with MyD88 probably coupling to the TLR2 receptor 
complex at sufficient levels to allow activation but having 
an inhibitory role in the signalling of TLR3 to JNK [60, 
61]. Although these results need to be validated through 
experimental investigation, they represent a promising 
direction for future studies.

Overall, we found 31 immune genes related to 
colon cancer recurrence. In particular, 12 of the 31 
identified genes have been reported in the literatures to 

Table 4: The drug sensitivity differences in differential expression levels of immune genes obtained 
by the cancer cell line project

Symbolf Description Compoundg Sensitivityh

ATP5A1
ATP synthase, H+ transporting, 

mitochondrial F1 complex,
alpha subunit 1, cardiac muscle

AZD6482 [39, 40], AV-951 [41, 42], MG-132, 
Dasatinib [43], SB-505124 A > B

CD96 CD96 molecule Temsirolimus, AZD6482 [39, 40] A > B

IL18R1 interleukin 18 receptor 1 PLX4720-rescreen [44], BX-795 [45], NU-
7441, Bosutinib [46], MLN4924 [47] A > B

GULP1 GULP, engulfment adaptor PTB domain 
containing 1 X5-Fluorouracil, KIN001-135,SNX-2112 [48] A < B

LYL1 lymphoblastic leukemia associated 
hematopoiesis regulator 1 GSK1070916 [49] A < B

SPP1 secreted phosphoprotein 1 AZD6482 [39, 40], AV-951 [41, 42], MG-132, 
Dasatinib [43], SB-505124 A > B

 fSymbols of immune genes that have SL genes., gCompounds from the Cancer Cell Line Project (www.cancerrxgene.org/) 
that rank Top 5 in ascending order by FDR and P-value < 0.05., hA: higher-expression-level, B: lower-expression-level.
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be related to colon cancer recurrence [23–37], which can 
be regarded as validation to our prediction results for 
these 12 genes. For the other 19 genes identified by us, 
we cannot exclude the possibility that some of them are 
due to false positive prediction. Therefore, there is a need 
for further experimental studies and external database of 
our predicted genes to validate our method and the results.

Our study was based on the data from the TCGA 
database. It is desirable to test and apply our method on 
the data from other sources. We therefore searched for 
the relevant data from other databases including Gene 
Expression Omnibus (GEO) [62], Ensembl [63], Hugo Gene 
Nomenclature Committee (HGNC) [64], ArrayExpress 
[65], and Catalogue of Somatic Mutations in Cancer 
(COSMIC) [66]. These databases provide comprehensive 
genome data for colon cancer, such as gene expression 
dataset, somatic mutation dataset and gene location dataset 
even gene Methylation dataset. However, none of them 
provide the information of the clinical prognosis tracking, 
which is needed by our study. Hence, we were unable to 
test and apply our method on the data from these databases. 
It is expected that more comprehensive information such 
as clinical prognosis tracking will be made available in 
more databases, which will better serve the need of various 
research and discovery efforts.

MATERIALS AND METHODS

Materials

We downloaded the colon carcinoma gene 
expression (microarray), gene somatic mutation data 
and clinical dataset from the TCGA data portal (https://

portal.gdc.cancer.gov/). For TCGA samples, somatic 
mutations were revealed from exome sequencing of 
matched tumor and normal tissue genome pairs. In the 
gene expression data, a total of 287 colon cancer samples 
and 41 normal samples were found. Considering that the 
gene expression activity is our primary concern, and for 
statistical consistency, we analyzed the same 287 colon 
cancer samples in the other 2 data types. There are 79 
and 4 samples missing in gene somatic mutation and 
clinical data, respectively. Thus, we analyzed 287 colon 
cancer samples in the gene expression, 208 colon cancer 
samples in the gene mutation data and 283 colon cancer 
in the colon cancer clinical data. We used clinical data 
for survival analyses and indication of tumor status from 
FireBrowse (http://gdac. broadinstitute.org/). According 
to the dataset mentioned above, 63 recurrent tumor 
samples and 177 non-recurrent tumor samples have been 
divided into two cancer groups. Considering that the 
TCGA dataset activity is our primary concern, and for 
statistical consistency, we analyzed 2546 immune genes 
contained in COAD from InnateDB (http://www.innatedb.
ca/redirect.do?go=resourcesGeneLists) [10]. We obtained 
pharmacogenomic data from the Cancer Cell Line Project 
(http://www.cancerrxgene.org/) covering 265 screened 
compounds and their targets, and including cancer cell 
lines’ drug response, drug sensitivity, and gene expression 
data. Ethical approval was avoided since we used only 
publicly available data and materials in this study. 

Comparison of immune genes expression levels

We normalized TCGA RNA-Seq gene expression 
data by base-2 log transformation. We identified 
differentially expressed genes between two classes of 

Figure 3: Scatter graph for somatic mutation burden of cancer samples (recurrent cancer and non-recurrent cancer). 
Every dot represents a sample, wherein, the red dots are recurrent caner samples and blue dots are non-recurrent cancer samples. The 
vertical axis shows the number of mutation genes in every cancer sample.
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samples using Student’s t test. To adapt to multiple tests, 
we calculated adjusted P-values (FDR) for t test P-values. 
We used the threshold of FDR < 0.05 and mean gene-
expression fold-change > 1.5 to identify the differentially 
expressed genes.

Comparison of the immune gene mutation rates 
and expression levels

We compared the immune gene mutation rates 
among different clinical phenotypes of cancer patients 
using Fisher’s Exact Test. Tumor stage phenotype was 

divided into two classes: early stage (Stage I-II) vs. late 
stage (Stage III-IV). A threshold of P-value < 0.05 was 
used to evaluate the correlation in mutation rates between 
the two classes of phenotypes.

Gene-set enrichment analysis

We performed pathway analysis of the gene 
sets using KEGG(www.genome.jp/kegg/), REACTO 
ME (www.reactome.org/) and the GSEA tool (http://
software.broadinstitute.org/gsea/msigdb/). We carried 
out network analysis of gene sets interacting with a 

Figure 4: Differential expression levels of immune genes in recurrent cancer compared to those in normal samples. The 
columns represent recurrent cancer samples (63), normal samples (41) without cancer, and the rows represent immune genes. The red color 
indicates that a gene is more highly expressed, and the green color indicates that it isn’t.
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number of gene products (proteins) generated by the 
BioGRID [58].

Survival analyses
We performed survival analyses of TCGA patients 

based on COAD mutation data. Kaplan–Meier survival 
curves were used to show the survival (disease free survival) 
differences between gene-mutated cancer patients and 
gene-wildtype cancer patients. We used the log-rank test 
to calculate the significance of survival-time differences 
between the two classes of patients with a threshold of 
P-value < 0.05.

Microsatellite instability status in all cancer 
samples

We divided the MSI into three groups, including 
MSI, MSS and non-available, and analyzed the correlation 
between stability of microsatellites and somatic mutation by 
using Fisher’s Exact Test. Based on the cancer recurrence 
immunogenes, we compared the correlation of 69 genes 
between gene somatic mutation and MSI by using Fisher’s 

Exact Test (P-value < 0.05) in COAD. At the same time, 
we analyzed the differential expression levels in MSI cancer 
samples compared to those in MSS cancer samples by 
Student’s t test with a threshold of FDR < 0.05 and a fold 
change >  1.5.

Somatic mutation burden of all gene-mutated 
samples

We integrated the clinical data and somatic mutation 
data. Then, we showed mutation burden and mutation types 
of all recurrent caner samples.

Verification of genes by the research based on 
the PubMed 

We obtained related research papers of 
experimental data from PubMed searches, and integrated 
all genes information to verify the 31 immune genes 
correlated with COAD recurrence.

Figure 5: TLR2 interaction networks.
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Identification of potential SL genes for immune 
genes

We identified the set of immune genes whose 
expression has significant difference between gene-mutated 
cancers and gene-wildtype cancers (Student’s t test, FDR 
< 0.05, fold change >  1.5), and has significant difference 
between gene-mutated cancers and normal tissues (Student’s 
t test, FDR < 0.05, fold change > 1.5). We identified potential 
SL genes for immune genes from the intersection of these 
two gene sets. To identify genes whose elevated expression 
is specifically related to other gene-mutated cancers, we 
believe that it is necessary to exclude as many genes as 
possible whose expression is significantly different between 
in gene-wildtype cancers and in normal tissues. 

Comparison of drug sensitivity in cancer cell 
lines

We compared IC50 values belonging to intestine 
tissue cancer cell lines between immune genes higher-
expression-level and lower-expression-level cancer cell 
lines for compounds using Student’s t test. We identified 
the compounds for which immune genes higher-expression-
level and lower- expression-level cancer cell lines have 
significantly different IC50 values using a threshold of 
P-value < 0.05.
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