Research Papers:
Fucoidan-coated CuS nanoparticles for chemo-and photothermal therapy against cancer
PDF | HTML | Supplementary Files | How to cite
Metrics: PDF 2486 views | HTML 7780 views | ?
Abstract
Bian Jang1,2,3,4, Madhappan Santha Moorthy2, Panchanathan Manivasagan2, Li Xu1, Kyeongeun Song1,2, Kang Dae Lee6, Minseok Kwak2,5, Junghwan Oh2,3,4 and Jun-O Jin1
1Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Jinshan District, Shanghai, China
2Marine-Integrated Bionics Research Center, Pukyong National University, Busan, South Korea
3Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Busan, South Korea
4Interdisciplinary Program of Biomedical Mechanical and Electrical Engineering, Busan, South Korea
5Department of Chemistry, Pukyong National University, Busan, South Korea
6Department of Otolaryngology-Head and Neck Surgery, Kosin University College of Medicine, Busan, Korea
Correspondence to:
Minseok Kwak, email: [email protected]
Junghwan Oh, email: [email protected]
Jun-O Jin, email: [email protected]
Keywords: fucodian; copper sulfide nanoparticles; photothermal therapy; chemotherapy; apoptosis
Received: June 21, 2017 Accepted: October 30, 2017 Published: January 03, 2018
ABSTRACT
In advanced cancer therapy, the combinational therapeutic effect of photothermal therapy (PTT) using near-infrared (NIR) light-responsive nanoparticles (NPs) and anti-cancer drug delivery-mediated chemotherapy has been widely applied. In the present study, using a facile, low-cost, and solution-based method, we developed and synthesized fucoidan, a natural polymer isolated from seaweed that has demonstrated anti-cancer effect, and coated NPs with it as an ideal candidate in chemo-photothermal therapy against cancer cells. Fucoidan-coated copper sulfide nanoparticles (F-CuS) act not only as a nanocarrier to enhance the intracellular delivery of fucoidan but also as a photothermal agent to effectively ablate different cancer cells (e.g., HeLa, A549, and K562), both in vitro and in vivo, with the induction of apoptosis under 808 nm diode laser irradiation. These results point to the potential usage of F-CuS in treating human cancer.
All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 23898