Oncotarget

Research Papers:

Genome-wide transcriptional profiling identifies potential signatures in discriminating active tuberculosis from latent infection

Liping Pan, Na Wei, Hongyan Jia, Mengqiu Gao, Xiaoyou Chen, Rongrong Wei, Qi Sun, Shuxiang Gu, Boping Du, Aiying Xing and Zongde Zhang _

PDF  |  HTML  |  Supplementary Files  |  How to cite

Oncotarget. 2017; 8:112907-112916. https://doi.org/10.18632/oncotarget.22889

Metrics: PDF 1735 views  |   HTML 2223 views  |   ?  


Abstract

Liping Pan1, Na Wei2, Hongyan Jia1, Mengqiu Gao3, Xiaoyou Chen3, Rongrong Wei1, Qi Sun1, Shuxiang Gu1, Boping Du1, Aiying Xing1 and Zongde Zhang1

1Beijing Chest Hospital, Capital Medical University, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China

2Medical Laboratory, Linyi Chest Hospital, Linyi 276000, China

3Tuberculosis Department, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China

Correspondence to:

Zongde Zhang, email: [email protected]

Keywords: genome-wide transcriptional profiling; signature; tuberculosis; latent tuberculosis infection

Received: May 10, 2017     Accepted: November 14, 2017     Published: December 04, 2017

ABSTRACT

To better understand the host immune response involved in the progression from latent tuberculosis infection (LTBI) to active tuberculosis (TB) and identify the potential signatures for discriminating TB from LTBI, we performed a genome-wide transcriptional profile of Mycobacterium tuberculosis (M.TB)–specific antigens-stimulated peripheral blood mononuclear cells (PBMCs) from patients with TB, LTBI individuals and healthy controls (HCs). A total of 209 and 234 differentially expressed genes were detected in TB vs. LTBI and TB vs. HCs, respectively. Nineteen differentially expressed genes with top fold change between TB and the other 2 groups were validated using quantitative real-time PCR (qPCR), and showed 94.7% consistent expression pattern with microarray test. Six genes were selected for further validation in an independent sample set of 230 samples. Expression of the resistin (RETN) and kallikrein 1 (KLK1) genes showed the greatest difference between the TB and LTBI or HC groups (P < 0.0001). Receiver operating characteristic curve (ROC) analysis showed that the areas under the curve (AUC) for RETN and KLK1 were 0.844 (0.783–0.904) and 0.833 (0.769–0.897), respectively, when discriminating TB from LTBI. The combination of these two genes achieved the best discriminative capacity [AUC = 0.916 (0.872–0.961)], with a sensitivity of 71.2% (58.7%–81.7%) and a specificity of 93.6% (85.7%–97.9%). Our results provide a new potentially diagnostic signature for discriminating TB and LTBI and have important implications for better understanding the pathogenesis involved in the transition from latent infection to TB activation.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 22889