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ABSTRACT

Low density lipoprotein (LDL) receptor-related protein-6 (LRP6) is an important
co-receptor of Wnt pathway, which plays a predominant role in development and
progression of colorectal cancer. Recently, dysregulation of LRP6 has proved to be
involved in the progression of cancers, but its biological role and clinical significance in
colorectal cancer remain unclear. In present study, we revealed that phosphorylation
of LRP6 was aberrantly upregulated in colorectal carcinoma correlating with TNM or
Dukes staging and worse prognosis. In addition, phosphorylated LRP6 was positively
correlated with nuclear accumulation of B-catenin. Overexpression or activation of
LRP6 could activate Wnt signaling and promote tumor cell migration in vitro. The
activation of LRP6 could induce microtubule dynamics and actin remodeling, probably
through regulation of microtubule-associated protein 1B (MAP1B), microtubule actin
cross-linking factor 1 (MACF1) and Rho GTPase--RhoA and Racl. The investigation
suggests that LRP6 may be a potential prognostic marker and therapeutic target in
the progression of colorectal cancers.

and progression of colorectal cancers in past decades.
Especially, nuclear translocation of -catenin, a hallmark
of Wnt signaling activation, has proved to be a critical
role in many aspects of cellular biological activities, such
as growth, differentiation, EMT, as well as cytoskeleton
remodeling [6, 7]. Nevertheless, Wnt signaling could be
further enhanced by its secreted ligands even in APC-
mutated situation, suggesting that that hyperactivation of
Wnt pathway may be contributed by other alterations in
colorectal cancers [8-11].

INTRODUCTION

Colorectal cancer is the third most common
cancer and fourth leading cause of cancer-related deaths
worldwide [1, 2] and there is potential for distant
metastasis following surgical excision of the primary
lesion [3]. Despite the introduction of new treatments,
the 5-year survival rate for metastatic colorectal cancer
remains below 10% [4]. Hence, the underlying mechanism
of metastasis, predictive biomarkers and therapeutic targets

for colorectal cancer are under extensive exploration. Loss
of function mutation in 4PC (adenomatous polyposis coli)
tumor suppressor gene has been detected in about 85%
of sporadic colorectal cancers, which leads to activation
of Wnt signaling pathway [5]. In fact, activation of Wnt
signaling has been clarified to be involved in initiation

Low-density lipoprotein (LDL) receptor-related
protein-6 (LRP6) is one of the co-receptors of Wnt
pathway, which form a signalosome with Wnt ligand
and Frizzled receptor to activate downstream cascade.
The phosphorylation of PPSPXS motifs of LRP6 could
recruit other Wnt signaling components Disheveled (Dvl),
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Axin and GSK3p to signalosome to amplify and stabilize
its phosphorylation, which can directly inhibit GSK3f
activity leading to multiple downstream cascades [12-
14]. Therefore, LRP6 represents an important regulatory
node in transducing Wnt stimulation. Recent reports reveal
that LRP6 contributed to tumor progression in colorectal
cancer and some other cancers [15-18]. However, the
mechanism about LRP6 in colorectal cancers is seldom
investigated.

In this study, we demonstrated that phosphorylated
LRP6 was markedly up-regulate in colorectal carcinoma
and indicated poor prognosis. The activation of LRP6
could enhance Wnt signaling and promote cell migration.
LRP6 governed the cytoskeleton stability and remodeling
through microtubule-related protein: microtubule-
associated protein 1B (MAP1B) and microtubule actin
cross-linking factor 1 (MACF1) as well as Rho GTPases.

RESULTS

Expression of Phosphorylated LRP6 is
correlated with aggressive clinical behavior in
colorectal carcinoma

Immuno-staining of both LRP6 and phosphorylated
LRP6 (p-LRP6) were performed in colorectal carcinoma
tissue. The expression of LRP6 was negative in most cases
(91.2%, 62/68) with few positive (8.8%, 6/68). However,
the immunostaining of p-LRP6 was in a diffuse pattern
in cytoplasm with no apparent membranous expression.
Comparing to non-neoplastic glandular cells (4.8%,
1/21) and adenoma tissue (5.3%, 2/38), the expression
of p-LRP6 was much more intense in carcinoma with
higher positive level (62.3%, 114/183), which displayed
the significant statistical difference (p<0.001) (Figure 1A,
1B). It was noteworthy that positive p-LRP6 was usually
observed at the invasive front tumor zone in infiltrating
nests of cancers (Figure 1A).

Wnt signaling plays a pivotal role in colorectal
carcinogenesis and the nuclear accumulation of -catenin
is widely accepted as the hallmark of Wnt signaling
activation [19, 20]. Accordingly, the expressions of
[B-catenin was immunohistochemically evaluated. Positive
nuclear expression of -catenin was 74.3% (136/183) in
carcinoma, which was higher than adenoma tissue (55.3%,
21/38) (p<0.05) (Supplementary Figure 1). At the same
time, the cytoplasm expression of B-catenin was also found
more frequently in carcinoma cells (79.8%, 146/183) than
adenoma (57.9%, 22/38) (p<0.05) (Supplementary Figure
1A, 1B). Besides, a positive correlation between p-LRP6
and nuclear expression of B-catenin was established
(Supplementary Table 1).

The correlations between p-LRP6 expression and
clinicopathologic parameters such as age, gender, tumor
size, depth of invasion, lymph node metastasis, TNM and
Dukes staging were analyzed (Supplementary Table 2).

Positive p-LRP6 was found in 92 of 115 cases (80.0%) of
advanced carcinoma (T3 and T4), while early carcinomas
(T1 and T2) showed positive staining in just 35.3% (24/68)
(»<0.001, ¥*=36.801). 76.6% (59/77) of cases with lymph
node metastasis was positive p-LRP6, but only 48.8%
(39/80) (p<0.001, ¥>=12.995) without metastasis showed
p-LRP6 expression. In addition, there was a positive
linear correlation between p-LRP6 expression and TNM
or Dukes staging (p<0.001). Kaplan-Meier single-factor
analysis and log-rank test demonstrated a statistically
significant decrease in disease-free survival (DFS) in
patients with positive staining of p-LRP6 (p=0.003)
(Figure 1C). However, evaluation of patients’ overall
survival (OS) displayed a borderline significance between
positive and negative expression of p-LRP6 (p=0.058)
(Figure 1D).

Taken together, these data proved that the p-LRP6
was involved in Wnt signaling activation and correlated
with a more aggressive phenotype with higher metastatic
potential and worse prognosis.

Activation of LRP6 increases Wnt/p-catenin
signaling in colorectal cancer cells

To evaluate the role of LRP6 in activation of Wnt
signaling, the plasmids LRP6-WT (wild-type LRPO),
LRP6-DA (dominant active, reserving the intracellular
domain (ICD) of LRP6, residues 1126-1613) and LRP6-
DN (dominant negative, reserving the extracellular domain
of LRP6, residues 1-1114) were constructed (Figure 2A).
With transfection of Lovo and HCT116 cells with above
plasmids, B-catenin immunofluorescence staining and
luciferase assay were carried out. The results showed that
nuclear staining of B-catenin was obviously enhanced
in LRP6-WT and LRP6-DA group with attenuated
membrane expression comparing to control or LRP6-DN
(»<0.001) (Figure 2B, 2C). Expectedly, overexpression of
LRP6-WT and LRP6-DA led to an activation of TCF/B-
catenin reporter up to about 2-fold, as compared to the
vector control or LRP6-DN (p<0.001) (Figure 2D). The
data demonstrated that activation of LRP6 could increase
Wnt signaling activity in colorectal cancer cells.

Activation of LRP6 promotes migration of
colorectal cancer cells

To determine whether up-regulation of LRP6 would
influence cancer cell migration and invasion, Transwell
assays with or without Matrigel were performed. In
migration assay, Lovo and HCT116 cells transfected
with LRP6-WT or LRP6-DA plasmids demonstrated
much higher motility potential than vector control group
or LRP6-DN group (p<0.001) (Figure 2E, 2F). As for
invasion assay, we failed to found the statistical difference
between each group, however, the results showed the
tendency of promoted invasive potential in LRP6-DA and
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LRP6-WT transfected cells (p=0.087) (Supplementary
Figure 2).

Above evidence suggested the possible role of LRP6
in promoting the migration in colorectal tumor cells.

Activation of LRP6 enhances cytoskeletal
dynamics and remodeling

Phosphorylation or overexpression of LRP6
contributed to colorectal carcinoma migration and
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invasion, which arise the question about how LRP6
manage to control such aggressive behavior. It was widely
agreed that migratory cancer cells undergo dramatic
molecular and cellular changes by remodeling their
cytoskeleton. Reorganization of the actin cytoskeleton
and the concomitant formation of membrane protrusions
required for cell motility, including focal adhesion,
lamellipodia, filopodia, podosomes and invadopodia [21,
22]. On the other hand, polymerization of microtubules
(MTs) also attribute to cancer cell migration and invasion.
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Figure 1: Immuno-staining of p-LRP6 correlated with outcome of colorectal cancers. (A) The representative images of
p-LRP6 staining in normal glandular cells (a), adenoma (b) and carcinoma (c) (x200). High magnification of p-LRP6 stained in front
zone of cancer invasion (*800) (d). (B) The percentage of positive p-LRP6 expression in normal glandular cells, adenoma, and colorectal
carcinoma. (C) Kaplan-Meier survival curves for the relation of p-LRP6 immuno-staining with DFS. (D) Kaplan-Meier survival curves for
the relation of p-LRP6 immuno-staining with OS. * p< 0.05, “p< 0.01, *"p< 0.001.
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MT cytoskeleton is polarized in migrating cells and is F-actin and focal adhesions, labeled respectively

essential for the directed migration [23]. We therefore by phalloidin and vinculin, were observed under

analyzed the function of LRP6 in regulating cytoskeletal immunofluorescence staining. With up-regulated LRP6-

remodeling and stability that may responsible for WT and LRP6-DA, Lovo and HCT116 cells stained

colorectal carcinoma migration and invasion. by phalloidin demonstrated a decrease in stress fibers,
A
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Figure 2: Activated LRP6 stimulates Wnt/p-catenin signaling and promotes cell migration. (A) Schematic diagram of His-
LRP6 deletion mutants. (B) The effects of LRP6 on nuclear translocation of B-catenin. Lovo and HCT116 cells were transfected with control
vector, LRP6-WT, LRP6-DA and LRP6-DN and expression of His-tag and B-catenin were measured by immunofluorescent staining. The
data showed was HCT116 cells. (C) The statistical analysis of B-catenin nuclear translocation in each group. (D) TOPFLASH activity upon
different LRP6 expression on HCT116 cells. (E) Expression of different domains of LRP6 influenced migration of cancer cells. Lovo and
HCT116 cells with transfection of control vector, LRP6-WT, LRP6-DA and LRP6-DN were subjected to Transwell analysis, respectively
(x200). The data showed was from Lovo cells. (F) The number of cells counted in migration assay and the statistical analysis. Scale bar,

20 pum. Values represent mean + SD of three experiments. “ p< 0.05, “p< 0.01, ""p< 0.001. All the experiments were repeated at least three
times.
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while cell membrane protrusions such as filopodia or
lamellipodia increased with emergence of invadopodia in
a portion of cells in LRP6-DA group (Figure 3A, 3B, 3C).
At the same time, focal adhesions labeled with vinculin
decreased (Figure 3D, 3E). Actin skeleton seemed to be
rearranged upon LRP6 overexpression and enabled tumor
cells to gain increased migratory capability.

The acetylation and detyrosination/retyrosination of
MTs acted as significant post-translational modifications.
The acetylation and detryrosination modification have
commonly been linked to MT stability [24, 25] while the
retyrosination is generally considered to occur on dynamic
MT assemblies [25]. As for MTs, the accumulation of
LRP6 could cause an increase in intensity of a-tubulin
staining (Figure 4A, 4B). In addition, upon transfection
with LRP6-WT and LRP6-DA, acetylated tubulins and
detyrosinated tubulins were decreased, while tyrosinated-
tubulins were obviously increased (Figure 4C). Thus,
it appeared that overexpression of LRP6 stimulated the
overall dynamics of MT network.

The involvement of MAP1B and MACF1 in
LRP6 modulation on MT cytoskeleton

Previous evidences suggests that MT assembly
and stability are highly regulated by microtubule-
associated proteins (MAPs) [26]. MAPIB is one of the
most significant members of MAPs and acts to maintain
the stability of MT by regulating the local balance among
acetylated, detyrosinated and tyrosinated MTs [27]. The
function of MAPIB is controlled by phosphorylation
[28], which is modulated by GSK3 [27, 29]. To further
demonstrate how LRP6 modulates the dynamic process of
MT assembly, we evaluated the status of phosphorylation
of MAP1B (p-MAP1B) and GSK3p in Lovo and HCT116
cells. Up-regulation of LRP6 through transfection of
LRP6-WT and LRP6-DA resulted in the attenuated level
of p-MAPI1B (Figure 5A). Consistently, the inactivated
form of GSK3f: phosphor-GSK3f (Ser9) was obviously
increased in LRP6-DA group while the total level of
GSK3p remained roughly unchanged (Figure 5A). Our
data suggested that LRP6 may negatively regulate the
phosphorylation of MAPIB through suppression of
GSK3p.

Another factor included in our study that regulated
MT cytoskeleton was MACF 1--a multidomain protein that
can promote MT dynamics to assist cell migration [30]. In
this study, overexpression of MACF1 was observed upon
LRP6 overexpression (Figure 5A) in Lovo and HCT116
cells. After knockdown of MACF1 by interfering RNA
(Figure 5B), acetylated tubulins were increased in LRP6-
WT and LRP6-DA group (Figure 5C), which indicated
that MACF1 was responsible for the MT instability. These
data could likely be elucidated that LRP6 modulated MT
assembly through upregulating MACF1 level.

LRP6 regulates actin remodeling via Rho
GTPase

Members of the RhoGTPse family play a pivotal
role in transmitting signals from upstream regulatory
molecular to effector proteins of actin cytoskeleton
remodeling. RhoGTPases are activated upon GTP binding
and inactive in their GDP-bound form [31]. RhoA,
Racl, and Cdc42 are the best studied members of the
RhoGTPase family and their critical role in cell migration
and invasion via actin remodeling has been extensively
described [32, 33]. To address the function of LRP6 in
actin remodeling, we analyzed the association of LRP6
with Rho GTPase members: RhoA, Racl and Cdc42.

Active GTP-bound form of RhoA, Racl and Cdc42
were evaluated in different LRP6 truncation transfected
cells by GST pull-down assay. In GST pull-down assay,
we purified the GST fusion protein of GST vector, GST-
PBD, GST-RBD and GST-WASP which were the adapter
protein of active GTP-bound RhoA, Racl and Cdc42
(Supplementary Figure 3). The date showed that form of
RhoA-GTP was markedly enhanced in LRP6-DA group
comparing to LRP6-WT and LRP6-DN group (Figure 6A).
As for Racl1-GTP, LRP6-WT and LRP6-DA transfection
displayed up-regulatory effect on Rac1-GTP than LRP6-
DN (Figure 6B). Whereas Cdc42-GTP didn’t show the
same trend as RhoA and Racl (Supplementary Figure
4). It was likely that activate RhoA and Racl, but not
Cdc42 undergone regulation of LRP6, especially through
its intracellular domain, to carry out the actin remodeling
function.

DISCUSSION

The vast of evidences have been accumulated that
Wnt signaling is involved in progression of colorectal
cancers, through either inducing epithelial-mesenchymal
transition (EMT) [8], inhibiting tumor cell apoptosis
[34] or increasing tumor angiogenesis [35]. The resultant
phenotypes in activation of Wnt signaling have been
credited to the nuclear translocation of [-catenin,
which triggers a series of target genes for mediating
cellular biological activities. Recent studies have reveal
an important role of LRP6 in contributing to tumor
progression in breast cancer, hepatocellular carcinoma and
colorectal cancer [36], but the exact molecular mechanism
is still elusive.

The cell process in EMT, apoptosis andangiogenesis
involves not only transcription of genes, but also
cytoskeleton dynamics. Several lines of evidence have
suggested the components of Wnt signaling functioned
in modulating cytoskeleton remodeling. For instance, Dvl
could directly binding to MTs and enhance the stability
and it can also modulate actin cytoskeleton remodeling
through DAMM1/RhoA axis and Racl axis [37]. More
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important, GSK3p could directly phosphorylate MAPs and MACF1 associated complex from the cytoplasm to
to increase MTs polymerization [38]. Axin acts as a the cell membrane [39]. Therefore, the three members of
component of Wnt signaling in translocation of Axin Dvl, Axin and GSK3p of Wnt signalosome could regulate
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Figure 3: Activation of LRP6 increases actin remodeling. (A) Overexpression of LRP6 induced actin remodeling. Lovo
and HCT116 cells were transfected by control vector, LRP6-WT, LRP6-DA and LRP6-DN and doubly stained by His and phalloidin.
Arrows indicate stress fibers, asterisk indicate the formation of invadopodia, arrowhead indicate filopodia and hollow arrowhead indicate
lamellipodia. The data showed was from HCT116 cells. (B) The percentage of decreased stress fibers in each group with statistical analysis.
(C) The percentage of increased filopodia and lamellipodia in each group with statistical analysis on HCT116 cells. (D) Overexpression of
LRP6 reduced focal adhesions of cells. Lovo and HCT116 cells were transfected by control vector, LRP6-WT, LRP6-DA and LRP6-DN
and doubly stained by His and vinculin. The arrows indicate focal adhesions. The data showed was from HCT116 cells. (E) The percentage
of decreased vinculin expression in each group with statistical analysis. Scale bar, 20 um. Values represent mean + SD of three experiments.
" p<0.05, "p<0.01, ""p< 0.001. All the experiments were repeated at least three times.
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cytoskeleton dynamics, respectively. LRP6 is one of the transmembrane protein and its ICD is indispensable for

co-receptors of Wnt pathway and phosphorylation of downstream signaling. It contains an S/T cluster and five

LRP6 could recruit Dvl, Axin and GSK3p to signalosome PPSPXS motifs that could be phosphorylated by several

that leading to multiple downstream cascades [12-14] to cytoplasmic kinases according to different physical

regulate cytoskeleton activities. LRP6 is a multidomain circumstance [13]. Phosphorylated PPSPXS motifs
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recruits Axin and GSK-3f to bind directly to ICD and
LRP6 ICD directly inhibits GSK-3f phosphorylation of
B-catenin [13, 14].

As showed in Figure 5A, the expression of
LRP6-WT or LRP6-ICD could decrease MAPIB
phosphorylation, which may result in decreasing
of acetylated, detyrosinated MTs and increasing of
tyrosinated MTs in colorectal cancer cells. It could be
that elevated expression of LRP6-WT or LRP6-ICD
could directly inhibit GSK-3f activity through binding,
which decreased MAP1B phosphorylation. In addition,
the expression status of LRP6 also altered inhibitory
phosphorylation of GSK-3p (Figure 5A), indicating that
activation of LRP6 may enhance GSK-3f phosphorylation,
which has been catalyzed by AKT1. Actually, we have
found that expression of LRP6 could stimulate PI3K/AKT
pathway (unpublished data).

MACEFT1 is a cross-link factor between MTs and
actins with ability to bridge MT and actin cytoskeletal
networks to assist cell migration [30]. Research has
showed that MACF1 could bind with Axin to form
a complex in translocation from cytoplasm to cell
membrane, acting as a component of Wnt signaling [39].
While the activation of LRP6 could recruit Axin [40] and
resultantly increase its bind to MACF1.

Apparently, it is reasonable that LRP6 could be
involved in the regulation of cytoskeleton dynamics, as
showed in this described investigation. As far as we know,
this study was the first report investigating the role of
LRP6 in cytoskeleton dynamics.

Actin remodeling is indispensable for invasive
protrusions in cell migration. The cytoskeleton
remodeling is generally regulated by well-known Rho
GTPases which includes three members of RhoA,
Racl, and Cdc42 [32, 33]. In the present investigation,
LRP6 overexpression led to a decrease in stress fibers
and focal adhesion but an increase in cell membrane
protrusions. In this study, we revealed that the active
form of LRP6, LRP6-ICD, obviously upregulated level of
active RhoA and Racl. Although RhoA was reported to
induce stress fiber formation and promotes cytoskeletal
configurations affecting cell-cell or cell-matrix adhesion
[31], some studies have shown that RhoA has dynamic
function in tumor cell migration and invasion through
suppressing stress fiber generation to permit RhoA
mediated lamellipodia formation [41]. And apparently,
Racl could induce formation of cellular protrusions
such as lamellipodia and membrane ruffle for mediating
cell motility [42-44]. However, how LRP6 regulate
RhoGTPase activity has been little documented. A recent
study reveals that LRP6 status could influence RhoA
activity and also could directly interact with DAAMI
(Disheveled-associated activator of morphogenesis 1),
a formin promoting GEF activity in Wnt signaling [45].
In addition, some investigations imply that GSK3p could
regulate RhoA and Racl [46, 47] and Dvl promote RhoA-

Racl signaling [37] and non-classic Wnt/Planar cell
polarity (PCP) signaling has been identified to be able to
trigger activation of the small GTPases RhoA and Racl,
leading to actin polymerization. Thus, it seems that Wnt
signaling could regulate actin remodeling in many aspects.

In conclusion, we found active form of LRP6--
phosphorylated LRP6 was markedly up-regulate and
indicated poor prognosis in colorectal carcinoma. We
investigated the mechanism of LRP6 on invasion and
metastasis and found that LRP6 regulated cytoskeleton
remodeling via MAP1B, MACF1 and Rho GTPase to
promote metastasis. Further research efforts in identifying
potential drug targets to disrupt LRP6 cytoskeleton
modulation could provide a novel therapeutic strategy to
improve metastatic colorectal cancer treatment.

MATERIALS AND METHODS

Ethics statement

This study was approved by the Peking University
Institutional Review Board and Ethics Committee prior to
the start of the project.

Patients and tissue specimens

A total of 183 surgically resected cases of colorectal
carcinoma were collected from the archives of the
Department of pathology, Peking University Health
Science Center. The patients included 100 males and
83 females, with a median age of 66.4 years (age range
from 27 to 91 years). None of the patients received
preoperative chemotherapy. 4% buffered formalin
fixed and paraffin-embedded sections (4um thick)
were stained with hematoxylin and eosin for histologic
evaluation of histological diagnosis, typing and grading.
Age, gender, tumor size, depth of invasion, lymph node
metastasis, TNM stage and Dukes stage were obtained
by review of medical charts and pathologic records. The
immunostaining of DNA mismatch repair genes (MMR),
including MLH1, MSH2 and MSH6, was positive in all of
183 cases, indicating their belonging to sporadic colorectal
carcinoma.

Among the patients, 157 cases were followed
to determine postoperative survival. During follow-
up, tumors recurred in 43 patients (27.4%), and sites of
recurrence included liver (25 patients), lung (6), lymph
nodes (3), and peritoneum (2), colon (2), ovary and pelvis
(2), bone (2), brain (1). 32 patients (20.4%) were dead of
disease by the end of the follow-up period.

Antibodies

The mouse monoclonal anti-LRP6 antibody
was from Santa Cruz (Santa Cruz, CA, USA). Rabbit
polyclonal anti-p-LRP6 (Ser1490) was from Bioss
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(Woburn, MA, USA). Mouse monoclonal anti-f-catenin
was from BD (Franklin Lakes, NJ, USA). Anti-phalloidin
was from Life (Carlsbad, CA, USA). Mouse monoclonal
anti-vinculin was from Boster (Wuhan, China). Mouse
monoclonal anti-a-tubulin, acetyl-a-tubulin, tyrosine-
o-tubulin were from Sigma-Aldrich (Saint Louis, MO,
USA). Rabbit polyclonal anti-detyrosinated-a-tubulin,
Mouse monoclonal anti-RhoA, Racland Cdc42 were
purchased from Abcam (Cambridge, MA, USA). Rabbit
polyclonal anti-phosphor-MAP1B (Thr1265) was from
Novusbio (Littleton, CO, USA). Rabbit polyclonal anti-
MACF1 was from Proteintech (Chicago, IL, USA).
Rabbit monoclonal anti-phosphor-GSK3f (Ser9) and
mouse monoclonal anti-GSK3 were from Cell Signaling
(Beverly, MA, USA). Rabbit polyclonal anti-His, mouse
monoclonal anti-His and anti-GST were from Origene
(Rockville, MD, USA).

Immunohistochemical staining

The immuno-staining was performed as
described previously [48]. Staining was individually
evaluated by two observers (QY and WH) blinded to all
clinicopathological information. Discrepancies in analysis
were reconciled following review by a third clinician (BZ).
Expression of p-LRP6 presented in cytoplasm, membrane
and combined, and >10% cells with cytoplasma staining
of p-LRP6 was regarded as positive. B-catenin staining
was found to be membranous, cytoplasmic, nuclear, or
some combination of these, and >10% cells with B-catenin
staining were regarded as positive.

Cell culture

Hela, Lovo and HCT116 cells were cultured in
Dulbecco modified Eagle medium with high glucose
supplemented with 10% fetal bovine serum (Gibco, Life
Technologies). Cells were incubated in a humidified
atmosphere with 5% CO, at 37 °C.

Plasmid construction and transfection

The wild-type his-LRP6 pOTENT-1 (LRP6-WT)
was from YouBio biotechnology company (Wuhan,
China). It was digested with Bglll (NEB), then re-
ligated to form the truncated his-LRP6 with ICD, which
regarded as the constitutive active form of LRP6 (LRP6-
DA, reserving LRP6-ICD, residues 1126-1613) [49].
LRP6-WT was also digested with Xhol, BglIl and EcoRI
(NEB), end-filled and re-ligated to form the mutation
only retain extracellular domain: 4 EGF-like repeats
(LRP6-DN, deleting LRP6-ICD, residues 1-1114).
TOPFLASH reporter construct and pRL-TK-Renilla
Vector were purchased from Promega (Madison, USA).
GST-PBD, GST-RBD and GST-WASP were constructed
from fragment of PBD, RBD and WASP, which were
amplified respectively from total cDNA using three

pairs of primers (sense primer: 5’-CACAAGCTTAAAG
AGCGGCCAGAG-3" and antisense primer: 5°-
CGACGCGTGTTGTAAA ACTCC AACACATC-3’
for PBD; sense primer: 5’- CACAAGCTTATCCTG
GAGGACCTGAATATG-3" and antisense primer: 5’-
CGACGCGTGAGGTCAGAGATGCAGACCC-3* for
RBD; sense primer: 5°- CACAAGCTT GGACATCCAG
AACCCTGACAT-3> and antisense primer: 5°-
CAGTGGACCAGAACGACCCTTGTTA-3’ for WASP),
and were cloned into pEX-N-GST vector. The small
interfering RNAs were designed and synthesized as
following: MACF1-KD1, 5’-GCUGGUCACCUUGC
GUCUATT-3’; MACF1-KD2, 5’-GCUCGUGACAU
AAUGGAAATT-3’; MACF1-KD3, 5>-GCUCAUAGCCA
AUCAGAAATT-3’; control, 5’-UUCUCCGAACGUGUC
ACGUTT-3’. Plasmids were transfected with
Lipofectamine 2000 (Invitrogen) and synthesized siRNAs
with Lipofectamine RNAIMAX (Invitrogen) according to
the manufacturer’s instructions.

Immunofluorescent microscopy

Cells seeding, fixing and staining were performed
as described previously [48]. The antibodies, including
anti-f-catenin (1:2000), anti-phalloidin (1:200), anti-
vinculin (1:100) and anti-a-tubuiln (1:500), were used,
respectively. Images were observed and recorded using a
fluorescence microscope (Model CX51; Olympus, Tokyo,
Japan), and Photoshop version 7.0 (Adobe Systems Inc.)
was used for image processing. The experiments were
performed independently at least three times.

Luciferase assay

Luciferase activity was examined using Luciferase
Assay kit (Promega). In brief, after transfection of
TOPFLASH reporter gene together with LRP6 mutantsin
24—well plate (8x10* cells per well) for 48 h, lysates of
Lovo and HCT116 cells were measured according to the
assay kit protocol. All data were normalized by Renilla
activity. The experiments were performed in duplicate and
repeated independently at least three times.

Transwell assay

Cells seeding, transfection, Matrigel preparation,
fixing and staining were performed according to described
previously [48]. Briefly, cells seeded on 24-well plate were
transfected, and after 48 h, the cells (1x10° cells) were
seeded into the upper chamber of Transwell 24-well plates.
For invasion assay, each insert was coated with 2 mg/ml
Matrigel and incubated at 37°C for lh. A total of 2x10?
cells were suspended in 100 ml serum-free DMEM media
and loaded into coated inserts. Migration and invasion
chambers were incubated in a humidified 5% CO? incubator
at 37°C for 12h and 24h respectively. The experiments were
repeated independently at least three times.
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Western blotting

The preparation of cells extracts, 10% SDS-
PAGE, electronic transfer, and chemiluminescence were
performed as described previously [48]. The antibodies
were used including anti-acetyl-a-tubulin (1:1000), anti-
detyrosinated-o-tubulin (1:500), anti-tyrosine-o-tubulin
(1:1000), anti-His (1:1000), anti-B-actin (1:1000), anti-
phosphor-MAP1B (1:1000), anti-MACF1 (1:500), anti-
GSK-3B (1:5000), anti-GSK3B-S9 (1:1000), anti-RhoA
(1:1000), anti-Rac1(1:2000), anti-Cdc42 (1:100), anti-GST
(1:5000). The experiments were repeated independently at
least three times.

GST pull-down assay

Plasmids encoding GST and GST-tagged
recombinant PBD, RBD and WASP domain proteins were
expressed in Escherichia coli BL21 cells (Invitrogen),
which was induced by IPTG for 3 hours at 30°C. Bacteria
were lysed in the buffer PBS-L (50 mM NaH2PO4,
150 mM NaCl, pH 7.2, I mM DTT, I mM EDTA, 1%
Triton X-100, 1 mg/ml Lysozyme and protease inhibitors
(Roche)) and sonicated. The cytoplasmic fraction of
bacterial lysates were mixed with Glutathione HiCap
matrix (Qiagen) and rocked for 30 minutes at 4 °C, then
eluted in the buffer PBS-EW (50 mM NaH2PO4, 150
mM NaCl, pH 7.2, | mM DTT, 1 mM EDTA). Purity of
the protein was analyzed by SDS-PAGE and assessed by
Coomassie Blue G-250 staining (Sigma-Aldrich). Equal
amounts of immobilized GST fusion proteins were mixed
with prepared cell lysates (control vector, LRP6-WT,
LRP6-DA and LRP6-DN transfected cells) and incubated
for 3 hours at 4 °C. The beads were eluted with PBS-
EW for 3 times and the supernatants were collected and
analyzed by Western blotting analysis. The experiments
were repeated independently at least three times.

Statistical analysis

All analysis was performed using SPSS statistics
software (Version 17.0, Chicago, IL, USA). Relationships
between tumor markers and other parameters were studied
using the chi-square test, Fisher’s exact test, Continuity
Correlation or the independent #-test when appropriate.
The influence of LRP6 expression on patient prognosis
was analyzed based on overall survival (OS) and disease-
free survival (DFS). OS was defined as the time from
initial diagnosis to death from any cause or last follow-
up. DFS was estimated as the time from initial diagnosis
to progression, recurrence, death or last follow-up. Both
DFS and OS curves were plotted using the Kaplan-Meier
method and compared with log-rank tests. A p value of less
than 0.05 was considered to be of statistical significance.
All the statistical tests and p values were two-sided, and
the level of significance was set at <0.05 (), <0.01 (**), or
<0.001 (")
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