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ABSTRACT

Recently, with the rapid progress of high-throughput sequencing technology, 
diverse genomic data are easy to be obtained. To effectively exploit the value of 
those data, integrative methods are urgently needed. In this paper, based on SNF 
(Similarity Network Diffusion) [1], we proposed a new integrative method named 
ndmaSNF (network diffusion model assisted SNF), which can be used for cancer 
subtype discovery with the advantage of making use of somatic mutation data and 
other discrete data. Firstly, we incorporate network diffusion model on mutation data 
to make it smoothed and adaptive. Then, the mutation data along with other data 
types are utilized in the SNF framework by constructing patient-by-patient similarity 
networks for each data type. Finally, a fused patient network containing all the 
information from different input data types is obtained by using a nonlinear iterative 
method. The fused network can be used for cancer subtype discovery through the 
clustering algorithm. Experimental results on four cancer datasets showed that our 
ndmaSNF method can find subtypes with significant differences in the survival profile 
and other clinical features.

INTRODUCTION

Cancer is believed to be a complicated and 
heterogeneous disease since that it is driven by different 
combinations of mutated genes rather than the individual 
gene, and those mutations vary among tumor samples. 
Great efforts have been made by several large-scale 
projects such as The Cancer Genome Atlas (TCGA) [2], 
International Cancer Genome Consortium (ICGC) [3], 
and Cancer Cell Line Encyclopedia (CCLE) [4], etc., 
which generated a sea of multiple genomic platform 
data. Therefore, integrative methods are urgently needed 
to simultaneously employ those molecular data for 
identification of tumor subsets with different clinical and 
biological meaning.

Until now, many successful researches on such 
integrative framework for cancer subtype identification 
have been published. For instance, Liu et al. [5] brought 
forward a method using regularized non-negative 

matrix factorization for gene expression analysis. Liu 
et al. [6] also came up with an approach for integrated 
analysis via block-constraint robust principal component 
analysis. Gu et al. [7, 8] came up with approaches which 
had made progress in classification and regression. 
Shen et al. [9] proposed a joint latent variable model 
named iCluster which can realize data integration and 
dimensionality reduction simultaneously. Clustering 
result can be obtained by applying a standard K-means 
algorithm on the joint latent variable. Though pioneering 
and effective, iCluster to a great extent relies on the 
step of feature preselection. Wang et al. [1] introduced a 
distinct integrative approach called SNF which contains 
a few steps. First, for each data type, a sample-by-sample 
similarity network is constructed using the Euclidean 
distance and a scaled exponential similarity kernel, then 
these similarity networks are fused into one single network 
by a nonlinear iterative method. At last, this fused network 
is clustered by spectral clustering to receive several tumor 
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groups. In SNF, diverse data such as DNA methylation, 
mRNA expression and miRNA expression data were used 
for identification of meaningful cancer subtypes. However, 
those data types are with continuous value for which the 
Euclidean metric is suitable. Obviously, it turns out to be 
helpless with discrete profile such as somatic mutation 
data. Indeed, for discrete data they do propose to use 
chi-squared distance (Supplementary Note-Chi-squared 
distance) to calculate the similarity between the patients, 
nevertheless by which we cannot get a satisfactory result.

There are intrinsic differences between mutation 
data and other data types with quantitative value: (i) 
mutation data has binary value so it is not suitable for 
Euclidean measurement; (ii) high-dimensionality makes 
typical binary similarity measures hard to be used; (iii) 
its sparseness (fewer than 100 genes mutated in nearly 
ten thousand genes) makes it heterogeneous such that 
clinically identical patients rare to share more than a 
single mutation. So it makes traditional distance-based 
similarity measurement impossible to be used. Actually, 
somatic mutation data has important value since it 
provides information about relationships between genes 
and biochemical pathways and comprehensive insight 
into tumor progress [10]. To deal with this problem, 
Hofree et al. [11] brought forward a method named NBS 
(network-based stratification) which integrated somatic 
mutation data with gene networks using network diffusion 
model and performed clustering in a consensus clustering 
framework to make result robust. It shows that somatic 
mutation data is a promising source for cancer subtype 
identification. However, NBS did not use any other levels 
of information data such as epigenome, transcriptome, etc.

In this paper, we proposed a method named 
ndmaSNF (network diffusion model assisted SNF) based 
on the integrative framework of SNF [1] for cancer 
subtype identifying using somatic mutation profile and 
other data from different platforms simultaneously. 
Figure 1 shows the schematic overview of our method. 
We roughly divided the data sources into two categories: 
continuous data and discrete data (Figure 1A). For discrete 
data (e.g. mutation status), we made it fit the framework of 
SNF by using network diffusion model (Figure 1B) along 
with gene interaction network. Then the discrete data was 
smoothed and could be used well via SNF framework 
together with those continuous data (Figure 1C). By 
combining similarity matrices from those two different 
kinds of data, a fused patient-by-patient similarity matrix 
was obtained through the nonlinear combination method 
used in SNF framework (Figure 1D). On this fused matrix, 
clustering result can be acquired by applying a clustering 
algorithm such as spectral clustering. We extensively 
applied ndmaSNF on several human cancer data sets 
consisted of various kinds of data types, and received 
biologically and clinically relevant cohorts of patients, 
with better P value and silhouette value compared to SNF. 

The clustering result broadly met the PAM50 classification 
indicated clinical value for treatment.

Moreover, existing methods generally identify 
network modules common to all tumors which may 
ignore the heterogeneity between various subtypes. In this 
study, we first use ndmaSNF on various data sources to 
gain cancer subtypes, and for each cancer subtype, we use 
DriverNet [12] to get potential driver genes. We then did 
pathway enrichment analysis on those genes per subtype. 
And the top 60 potential driver genes attained from 
DriverNet were used for subtype-specific network module 
discovery via software GenRev [13]. The experimental 
results indicated that our ndmaSNF has the ability to 
find distinct cancer subtypes relevant to different clinical 
outcomes and network modules.

RESULTS

Performance comparison

We evaluated the performance of our method 
ndmaSNF by comparing it with two state-of-the-art 
methods, i.e. SNF [1] and LRAcluster [14] via silhouette 
value and P value as metrics on four cancer datasets (BIC: 
breast invasive carcinoma; KRCCC: kidney renal clear 
cell carcinoma; LSCC: lung squamous cell carcinoma; 
COAD: colon adenocarcinoma). The experimental results 
are listed in Tables 1 and 2 (For P value, the lower the 
better; for silhouette value, the higher the better).

In Table 1, the terms in second row (SNF without 
mutation data) mean that we used 3 continuous data 
types (DNA methylation, mRNA expression, miRNA 
expression). And the terms in other rows (SNF, 
LRAcluster and ndmaSNF) are the results with 4 data 
types including mutation data. By comparing the second 
row (SNF without mutation data) and the fifth row 
(ndmaSNF), we can see that somatic mutation profile 
is a promising data source for identification of cancer 
subtypes. However, the promising value of the mutation 
data was not reflected by using original SNF as the third 
row (SNF) shows. By comparing the second row and 
the third row, we can see that SNF didn’t exploit the 
mutation data well, and even may had a bad influence 
compared with result without mutation data (KRCCC, 
COAD). LRAcluster [14] is another integrative method 
with fast properties to find the shared principal subspace 
across multiple data types. However, it even didn’t 
perform well compared with original SNF. Due to its 
fastness, we think that LRAcluster has an advantage in 
large-scale data analysis such as pan-cancer analysis 
instead.

In terms of silhouette value, the promotion of our 
method compared with other methods was slight (Table 2). 
And for COAD cancer data set, performance of our method 
even decreased slightly, we attributed the result to the fact 
that COAD has at least one subtype with few patients, it 
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makes the silhouette value very sensitive and unstable. 
However, we can at least conclude that the involvement 
of the mutation data did not destroy the combination 
of the original 3 data types (DNA methylation, mRNA 
expression, miRNA expression) used in SNF [1].

A case study: breast invasive carcinoma

To further validate that our ndmaSNF can identify 
subtypes with biological and clinical differences, we then 
did in-depth research on breast invasive carcinoma. Breast 

Figure 1: The flow chart of ndmaSNF. (A) Dividing data into two main categories. (B) Pre-process for data types with discrete value 
via network diffusion model incorporating gene interaction network. (C) “Smoothed” mutation data. (D) All of these patient similarity 
matrices derived from various data types were combined into one fused patient similarity matrix through integrative framework of SNF.
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invasive carcinoma (BIC) is a common breast cancer, 
growing into normal and healthy tissues.

We totally identified 5 subtypes of BIC with log-
rank P value of 2.46E-08. To show the extent of those 
subtypes discovered by our method corresponded to the 
established PAM50 classification, we gathered statistics of 
the distribution of PAM50 per subtype. C1-C5 in Figure 
2A represents subtypes identified by our method. We 
can see that C3 and C4 are considerably fit the result of 
PAM50 classification: Basal-like for C3 and Luminal A 
for C4. And C1 is mostly consisted of Basal-like cases, 
C2 is mostly composed of luminal B cases. C5 is mostly 
comprised by Basal-like cases and Her2-enriched cases. 
Luminal A subtype is more likely to have a good prognosis 
while Basal-like subtype is aggressive and have a poorer 
prognosis, this can be reflected in Kaplan-Meier plot which 
shows an obvious significant survival difference in Figure 
2B. C3 has significantly shorter overall survival durations 
than those with C4. Although C1 and C3 are both Basal-
like subtypes, they have a difference in survival probability 
(P = 0.036) which can be seen in Figure 2A. C1 is more 
aggressive than C3 as the survival curves shows.

In Figure 3A, we can see that C1 and C3 are mainly 
triple negative while C2 and C4 are largely ER positive, 
PR positive and HER2 negative, however, the situation 
of C5 is somewhat complicated. Basal-like subtype breast 
cancer is usually triple negative, this verified the fact that 
C1 and C3 are mostly consisted of Basal-like cases in 
Figure 2A.

Furthermore, we turned to mutation frequencies 
for more validation. Thus, we focus on the genes with 
high mutation frequency and can find evident differences 

between each cluster (Figure 3B): ZNF670, SNMYD3, 
CNST, and TFB2M for cluster 1; CCND1, MAP3K1 and 
ERBB2 for cluster2; TP53, CTSS, NLRP3, SH3BP5L 
for cluster 3; PIK3CA, GATA3 for cluster 4 and TP53, 
PIK3CA, ERBB2 and CCND1 for cluster 5. It shows 
that each subtype identified has a different combination 
of genes highly mutated and corresponded to various 
biological processes.

Driver gene analysis per subtype identified in 
breast invasive carcinoma

To further study by what gene combination 
each subtype is driven, and whether those driver genes 
combination are different corresponded to different 
biological pathway, we applied DriverNet [12] to find 
important genes by using gene expression data, mutation 
data and gene-by-gene network.

In table 3, Note that TP53 showed great importance 
in all subtypes, however, a total combination of top driver 
genes is distinct in each subtype. To clearly show the 
difference, we used the top 60 driver genes identified 
from each subtype to do further study including pathway 
enrichment analysis and network module identification. 
The aim is to find out what biological process and 
important pathway those driver genes from different 
subtypes participated in.

We did a KEGG pathway enrichment analysis per 
subtype and selected pathways related to breast cancer. 
From Figure 4, we can see differences between subtypes 
at the enrichment level. It is not surprising to see that 
all subtypes have an apparent enrichment in hsa05200: 

Table 1: Comparison of ndmaSNF with other methods on four cancer datasets using P value

LSCC KRCCC BIC COAD

SNF without mutation 
data 1.16E-03 8.76E-04 5.74E-06 3.38E-04

SNF 9.86E-04 1.45E-03 1.59E-06 3.56E-04

LRAcluster 4.30E-02 3.24E-02 5.70E-02 9.90E-03

ndmaSNF 2.83E-04 3.43E-04 2.46E-08 1.40E-04

Table 2: Comparison of ndmaSNF with other methods on four cancer datasets using silhouette value

LSCC KRCCC BIC COAD

SNF without mutation data 0.46 0.34 0.43 0.50

SNF 0.46 0.33 0.34 0.51

LRAcluster 0.50 0.32 0.46 0.35

ndmaSNF 0.52 0.39 0.45 0.43
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Pathways in cancer. Also, Apoptosis, a programmed cell 
death mechanism, is commonly enriched in C2, C3 and 
C5.

C1 is typically enriched in Wnt and ErbB signaling 
pathway. The Wnt signaling pathway is one of a group 
of signal transduction pathways made of proteins that 
pass signals into a cell through cell surface receptors. 
Wnt signaling is identified for its role in carcinogenesis. 
This pathway's clinical importance is demonstrated by 
mutations that lead to various diseases, including breast 

cancer [15]. Furthermore, excessive ErbB signaling is 
associated with the development of a wide variety of types 
of solid tumor [16].

C2 is typically enriched in MAPK signaling 
pathway. The MAPK is a chain of proteins in the cell that 
communicates a signal from a receptor on the surface of 
the cell to the DNA in the nucleus of the cell. When one of 
the proteins in the pathway is mutated, it can become stuck 
in the “on” or “off” position, which is a necessary step 
in the development of many cancers. Components of the 

Figure 2: (A) Distribution of PAM50 samples in the identified subtypes. (B) Kaplan-Meier survival curves of 5 subtypes identified.

Figure 3: (A) Clinical features with ER/PR/HER2 per subtype. (B) Comparison of the mutation frequencies among the identified subtypes.
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MAPK/ERK pathway were discovered when they were 
found in cancer cells. Drugs that reverse the “on” or “off” 
switch are being investigated as cancer treatments [17].

C3 is typically enriched in p53 signaling pathway. 
In breast cancer, p53 mutation is associated with more 
aggressive disease and worse overall survival. Molecular 
pathological analysis of the structure and expression of 
constituents of the p53 pathway is likely to have value in 
diagnosis, in prognostic assessment and in treatment of 
breast cancer [18].

C4 is typically enriched in Cell cycle and Adherens 
junction. The cell cycle is the series of events that takes 
place in a cell leading to its division and duplication. 
Regulation of the cell cycle involves processes crucial to 
the survival of a cell, including the detection and repair of 
genetic damage as well as the prevention of uncontrolled 
cell division. Adherens junctions, the most common type 
of intercellular adhesions, are important for maintaining 
tissue architecture and cell polarity and can limit cell 
movement and proliferation.

Table 3: Top 10 driver gene per subtype attained by DriverNet [5]

C1 C2 C3 C4 C5

TP53 TP53 TP53 TP53 TP53

CSNK2A1 MYC MYC PIK3CA ERBB2

EP300 CCND1 CDKN2A MYC MYC

PRKCA PAK1 RB1 IGF1R PIK3R1

UBQLN4 CSNK2A1 STAT5A MAP2K4 SMAD3

SHC1 ERBB2 MCL1 LRP2 ACTL6A

MYC IGF1R IGF1R GATA3 TTN

CCDC85B MAPT TUBG1 MCL1 U2AF2

RELA RELA IKBKB CDH1 SMAD2

PAK1 PIK3R1 BRCA1 TTN CDKN2A

Figure 4: Pathway enrichment analysis for the top 60 driver genes per subtype.
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C5 is typically enriched in many pathways 
represented in C1-C4 such as Cell cycle, p53 signaling 
pathway, Adherens junction, ErbB signaling pathway and 
Apoptosis. This also can be reflected in Figure 2A: C5 is a 
mixture of different PAM50 subtypes.

Network module identification and analysis per 
subtype identified in breast invasive carcinoma

To get a more clear understanding of the 
combination of different driver genes, we seek for their 
significance at network module level. Therefore, we used 
them as seed genes to find network module per subtype.

For subtype C1, we used top 60 driver genes as 
seed genes and 42 genes connected to each other on gene 
interaction network by utilizing GenRev [13]. We totally 

found 10 network modules and 5 of which are connected 
to each other and have more than 4 genes with the 
division modularity of 0.53. Those 5 modules comprised 
the largest sub-network (Figure 5). The densest module 
is TP53 module which contains many important genes 
related to breast cancer. TP53 is a well-known tumor 
suppressor gene associated with various cancers including 
breast invasive carcinoma. Its mutation status and gene-
expression based groups are important survival markers 
of breast cancer, and these molecular markers may provide 
prognostic information that complements clinical variables 
[19]. TP53 module also contained SMARCA4, which 
can inhibit the cells’ ability to migrate and invade. So it 
attaches an importance to pathogenesis of breast cancer 
as a prognostic marker together with a possibly selective 
therapeutic target [20]. HDAC2 is another important gene 

Figure 5: Network modules discovered in subtype 1. The green nodes represent genes we input, and the yellow nodes represent 
linker genes connecting those genes we input.
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Figure 6: Network modules discovered in subtype 2.

Figure 7: Simple presentation on network diffusion model. (A) Somatic mutation data. (B) Gene interaction network. (C) 
“Smoothed” mutation data via network diffusion model.
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related to breast cancer that is inclined to strongly express 
in aggressive breast cancer tumor subgroups [21]. We also 
discovered a SMAD4 module. Current research shows that 
SMAD4 plays a key role in both tumor suppression and 
progression of breast cancer cells [22]. Another critical 
gene included in this module is EP300, it encodes the 
transcriptional cofactor p300, which is highly expressed 
in diverse human cancers. Specially, the over expression 
of p300 in breast cancer predicts tumor recurrence and 
adverse prognosis [23]. The remaining three modules 
contain some other important genes such as PIK3CA, 
TYK2 and APOA1, respectively. PIK3CA is a well-known 
oncogene in human cancers. Accumulating evidence 
suggests that mutation of PIK3CA is an early event in 
breast cancer and is more likely to play a role in breast 
tumor initiation than in invasive progression [24]. The 
role of TYK2 is confirmed by biological experiments in 
suppressing the growth and metastasis of breast cancer 
[25]. For APOA1, it is one of the most significant genes 
correlated with the proteomic profile that are closely 
related to breast cancer and may be involved in robust 
detection of disease progression [26].

For subtype C2, after inputting top 60 driver genes as 
seeds, 41 genes were retained and we wholly got 8 modules 
with the division modularity of 0.50. The most densely 
connected sub-network is shown in Figure 6. The ESR1 
module contained some important genes such as ESR1. 
Recent studies suggest that activating mutations in ESR1 
are a key mechanism in acquired endocrine resistance in 
breast cancer therapy [27]. The PIK3CA module contained 
some important genes such as STAT3 and PIK3R1. Current 
findings show that activated STAT3 signaling contributes to 
breast cancer progression and resistance to chemotherapy 
by inducing expression of the antiapoptotic protein, 
Survivin in part [28]. PIK3CA mutations and PIK3R1 
underexpression show opposite effects on patient outcome 
and could become useful prognostic and predictive factors 
in breast cancer [29]. We also identified a CDC42 module 
including important genes such as CDC42 and PAK1. 
Growth and motility inhibition of breast cancer cells by 
epidermal growth factor receptor degradation is correlated 
with inactivation of CDC42 [30]. And study shows 
associations between PAK1 expression and subcellular 
localization in tumor cells and tamoxifen resistance [31].

We also did network module analysis for C3, C4 
and C5, the results are given in Supplementary Materials 
(Supplementary Results-network module analysis for C3, 
C4 and C5).

DISCUSSION

Integrative methods are urgently needed to exploit 
multiple genomic platform data simultaneously and get 
insight into human neoplasia, such as identification of 
cancer subtypes. In our work, we proposed a method 
named ndmaSNF by extending SNF, an integrative 

framework, to make full use of somatic mutation data. By 
using a network diffusion model, the somatic mutation 
data was “smoothed” and its value can be exploited to a 
large extent. The experimental results on several cancer 
data sets indicated that our method outperformed in 
identification of patients cohort with biological and clinical 
meaning. For example, we totally find 5 subtypes C1-C5 
in BIC with different biological and clinical features. C3 
is mostly consisted of Basal-like cases whereas C4 is 
mostly composed of luminal A cases. And the prognosis 
of C4 is better than C3. Interestingly, C5 is a mixture of 
different PAM50 subtypes and is typically enriched in 
many pathways represented in C1-C4. According to those 
subtypes, we did a deeper analysis including pathway 
enrichment analysis and network module identification. 
The results showed that our method could capture 
biological and clinical features effectively. Our research 
also demonstrated the value of the mutation data in giving 
insight into tumorigenesis. In the future, we will use some 
other discrete data such as copy number variations to make 
our method more compatible.

MATERIALS AND METHODS

Datasets

The data (DNA methylation, mRNA expression, 
miRNA expression) we used in this paper including 
four cancer data sets from TCGA website (https://
cancergenome.nih.gov/), which have been processed and 
provided by Wang et al. [1]. And the mutation data of 
those four cancer data sets were obtained from UCSC data 
portal (http://genome.ucsc.edu/). We restricted our analysis 
to the 85 TCGA LSCC cases, 75 TCGA COAD cases, 
101 TCGA KRCCC cases and 105 TCGA BIC cases, for 
which all DNA methylation, mRNA expression, miRNA 
expression and somatic mutation data were available. 
We used PPI (protein-protein interaction) network data 
obtained from NBS [11] after processing, with 11491 
genes as gene interaction network.

SNF integrative framework

Suppose we have n samples (X1, X2 … Xn) which 
possess several data sources on multi-scale level (e.g. 
mutation data, expression data). We want to use these data 
simultaneously for identification of cancer subtype. The 
SNF framework can be described as follows.

First, for each data type, an n×n patient similarity 
matrix W  was constructed with its entry W i j,( )  
demonstrating the similarity between patient Xi  and 
patient �X j . The specific formula to calculate W is as 
follows:

W i j
x xi j

i j

, exp
,

,

( ) = −
( )











ρ

µε

2

  

(1)
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Here ρ X Xi j,( )  represents the Euclidean distance 
between patient Xi  and patient �X j. And μ is an empirical 
hyper parameter which is recommended to be set in the 
range of [0.3, 0.8]. Furthermore, ε i j,  is defined as follows:

ε
ρ ρ ρ

i j
i i j j i jmean x N mean x N x x

,

, , ,
=

( )( ) + ( )( ) + ( )
3

  

(2)

Here mean X Ni i( ( , ))ρ  is the average of the sum 
of the distances between Xi  and each of its neighbors. 
Obviously, the Euclidean distance measure is suitable 
for continuous variables. For discrete data, the chi-
square distance is proposed (Supplementary Note-Chi-
squared distance). There are two derivatives of matrix � W , 
 namely, matrix �P  and matrix � S . Matrix P  carries the 
full information about the similarity of each patient to all 
others obtained by performing normalization on � W :
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Matrix S  only encodes the similarity to the K most 
similar patients for each patient via K nearest neighbors 
(KNN):
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where � Ni � represents a set of � Xi’s neighbors including �Xi.  
By using �P as the global structure and �S  capturing local 
structure, a nonlinear iterative procedure is proposed:
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where P V( ) represents P  calculated from the v-th data 
profile. This procedure updates every P V( ) each time by 
m parallel interchanging diffusion processes. After t steps, 
the fused matrix P C( ) can be learned by taking average 
of all P V( ).

Network diffusion model

We proposed to apply network diffusion model [32] 
incorporating gene interaction network on mutation profile 
and other discrete data. By using this method, the discrete 
data was “smoothed” and carries the information about 
similarity of tumor sample at the pathway level rather than 
the individual gene level, thus making SNF integrative 
framework work suitably and effectively on discrete data.

We first mapped patient mutation profile onto a gene 
interaction network. Then network diffusion model was 
applied to diffuse the effect of each mutated gene over this 
network for each patient according to the function:

F F A Ftt+ = + −( )1 01α α   (6)

F0 � is the binary patient-by-gene mutation data 
(Figure 7A), and A is a degree-normalized adjacency 
matrix of the gene interaction network (Figure 7B).α  is 
used to adjust the distance that the mutation signal can 
propagate in the network. It is a tuning parameter in the 
optimal range of [0.5, 0.8]. The diffusion function run 
iteratively until Ft+1  converges ( F Ft t+

−− < ×1
61 10 ).  

The result Ft+1 obtained is a “smoothed” mutation profile 
with quantitative value indicating the influence of each 
mutation per patient through network diffusion (Figure 
7C). In this way, not only genes that are mutated will 
get high influence scores, but also genes that are close 
to the mutated genes in the network. According to this 
“smoothed” matrix, we seek for patient similarity as 
mutational consistency at pathway level rather than 
individual gene level. The benefit is 2-fold: (i) by 
“smoothing”, the sparseness is reduced, so the traditional 
distance measurement is feasible. (ii) in network diffusion 
model, mutation consistency is searched at pathway level 
rather than individual gene level, thus it will give a more 
comprehensive insight into similarity between patients. 
Since tumor process is driven by a combination of mutated 
genes, those genes’ influence is propagated through gene 
interaction network, so the tumor similarity at pathway 
level is more biologically significant and can improve the 
identification of cancer subtype.

Evaluation metrics

To compare the performance of our method with 
established methods, we chose two metrics as evaluation 
index. First, we used P value for log-rank test of survival 
analysis by using survival time. P value measures the 
degree of significant difference between survival data 
of different subtypes. The lower the P value is, the more 
obvious the difference between subtypes is. For survival 
analysis, we took the same method used in SNF [1], thus 
we used the number of days to the last follow-up and vital 
status. However, for COAD, due to many missing values, 
these are combined with the number of days of last known 
living.

We also used silhouette value [33] to measure the 
quality of the clustering result. The silhouette value ranges 
from -1 to 1, where a high value indicates that the patient 
is well matched to its own cluster and poorly matched to 
other clusters. Then the mean value of silhouette value for 
all the patients was used as a measure of the compactness 
within clusters and the separation among clusters.
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