Priority Research Papers:
Macrophage depletion through colony stimulating factor 1 receptor pathway blockade overcomes adaptive resistance to anti-VEGF therapy
PDF | HTML | Supplementary Files | How to cite
Metrics: PDF 2732 views | HTML 3899 views | ?
Abstract
Yasmin A. Lyons1, Sunila Pradeep1, Sherry Y. Wu1, Monika Haemmerle1, Jean M. Hansen1, Michael J. Wagner1, Alejandro Villar-Prados1, Archana S. Nagaraja1, Robert L. Dood1, Rebecca A. Previs1, Wei Hu1, Yang Zhao4, Duncan H. Mak,7 Zhilan Xiao5, Brenda D. Melendez5, Gregory A. Lizee5, Imelda Mercado-Uribe6, Keith A. Baggerly4, Patrick Hwu5, Jinsong Liu6, Willem W. Overwijk5, Robert L. Coleman1 and Anil K. Sood1,2,3
1 Departments of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
2 Center for RNAi and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
3 Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
4 Department of Bioinformatics and Computational Biology, Division of Quantitative Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
5 Department of Melanoma Medical Oncology-Research, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
6 Department of Pathology, Division of Pathology and Laboratory Medicine, Section of Gynecologic Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
7 Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
Correspondence to:
Anil K. Sood, email:
Keywords: adaptive resistance, anti-VEGF therapy, tumor associated macrophages, tumor microenvironment, CSF1R inhibition
Received: April 18, 2017 Accepted: July 20, 2017 Published: August 24, 2017
Abstract
Anti-angiogenesis therapy has shown clinical benefit in patients with high-grade serous ovarian cancer (HGSC), but adaptive resistance rapidly emerges. Thus, approaches to overcome such resistance are needed. We developed the setting of adaptive resistance to anti-VEGF therapy, and performed a series of in vivo experiments in both immune competent and nude mouse models. Given the pro-angiogenic properties of tumor-associated macrophages (TAMs) and the dominant role of CSF1R in macrophage function, we added CSF1R inhibitors following emergence of adaptive resistance to anti-VEGF antibody. Mice treated with a CSF1R inhibitor (AC708) after anti-VEGF antibody resistance had little to no measurable tumor burden upon completion of the experiment while those that did not receive a CSF1R inhibitor still had abundant tumor. To mimic clinically used regimens, mice were also treated with anti-VEGF antibody and paclitaxel until resistance emerged, and then a CSF1R inhibitor was added. The addition of a CSF1R inhibitor restored response to anti-angiogenesis therapy, resulting in 83% lower tumor burden compared to treatment with anti-VEGF antibody and paclitaxel alone. Collectively, our data demonstrate that the addition of a CSF1R inhibitor to anti-VEGF therapy and taxane chemotherapy results in robust anti-tumor effects.
All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 20410