Oncotarget

Reviews:

Glutathione peroxidases as oncotargets

Yang Jiao _, Yirong Wang, Shanchun Guo and Guangdi Wang

PDF  |  HTML  |  How to cite

Oncotarget. 2017; 8:80093-80102. https://doi.org/10.18632/oncotarget.20278

Metrics: PDF 1994 views  |   HTML 4535 views  |   ?  


Abstract

Yang Jiao1,*, Yirong Wang2,*, Shanchun Guo3 and Guangdi Wang3

1 Department of Stomatology, PLA Army General Hospital, Beijing, P.R. China

2 State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, P.R. China

3 RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, USA

* These authors have contributed equally to this work

Correspondence to:

Shanchun Guo, email:

Guangdi Wang, email:

Keywords: glutathione peroxidases, oxidative stress, reactive oxygen species, carcinogenesis, drug target

Received: November 04, 2016 Accepted: June 20, 2017 Published: August 16, 2017

Abstract

Oxidative stress is a disturbance in the equilibrium among free radicals, reactive oxygen species, and endogenous antioxidant defense mechanisms. Oxidative stress is a result of imbalance between the production of reactive oxygen and the biological system’s ability to detoxify the reactive intermediates or to repair the resulting damage. Mounting evidence has implicated oxidative stress in various physiological and pathological processes, including DNA damage, proliferation, cell adhesion, and survival of cancer cells. Glutathione peroxidases (GPxs) (EC 1.11.1.9) are an enzyme family with peroxidase activity whose main biological roles are to protect organisms from oxidative damage by reducing lipid hydroperoxides as well as free hydrogen peroxide. Currently, 8 sub-members of GPxs have been identified in humans, all capable of reducing H2O2 and soluble fatty acid hydroperoxides. A large number of publications has demonstrated that GPxs have significant roles in different stages of carcinogenesis. In this review, we will update recent progress in the study of the roles of GPxs in cancer. Better mechanistic understanding of GPxs will potentially contribute to the development and advancement of improved cancer treatment models.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 20278