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ABSTRACT
In this article, we review the origin and therapeutic perspectives of bladder 

cancer stem cells (BCSCs), which are integral to the initiation, high recurrence and 
chemoresistance of bladder cancer. BCSCs are heterogenous and originate from 
multiple cell types, including urothelial stem cells and differentiated cell types, 
including basal, intermediate stratum and umbrella cells. Cell surface markers, 
including CD44, CD67LR, EMA, ALDH1A1 and BCMab1, are used to identify and isolate 
BCSCs. The Hedgehog, Notch, Wnt and JAK-STAT signaling pathways play key roles 
in maintaining the stemness, self-renewal and proliferative potential of BCSCs. 
High expression of ABC transporters, acetaldehyde dehydrogenase, antioxidants 
and apoptosis resistance proteins in BCSCs play a critical role in chemoresistance. 
Consequently, a greater understanding of the biology of BCSCs will be important for 
identifying effective therapeutic targets to improve clinical outcomes for bladder 
cancer patients. 

INTRODUCTION

Bladder cancer is the most common malignant 
tumor of urinary system with an increasing incidence 
[1]. Papillary and non-papillary carcinomas are the 
two different types of bladder cancer with unique, yet 
overlapping clinical and pathological features [2]. The 
urothelial carcinomas of the bladder are generally called 
bladder cancer or bladder transitional cell carcinoma 
and are most common. Nearly 80% of urothelial 
carcinomas are non-invasive urothelial papillomas with 
high recurrence rates after resection without infiltrating 
the bladder wall or distant metastasis. The rest 20% are 
muscle-invasive bladder cancers that are highly invasive 
with distant metastasis [3]. Although patients with 
superficial papillary lesions usually experience multiple 

recurrences, only 10%-30% of them develop into high-
grade invasive tumors. On the contrary, most patients 
with high-grade invasive bladder cancers do not show 
superficial papillary lesions. The 5-year survival rate 
of muscle-invasive bladder cancer patients is low and 
has shown no improvement inspite of great advances 
in prognosis and surgical methods. The bladder cancer 
stem cells (BCSCs) are probably responsible for the high 
recurrence rates of bladder cancer, tumor heterogeneity 
and other complex biological behaviors.

The cancer stem cells (CSCs) are defined as a subset 
of cells with the ability to self-renew and differentiate into 
hierarchical tumor cells, thereby contributing to tumor 
heterogeneity [4]. Cancer stem cells (CSCs) were first 
identified in hematopoietic malignancies as a subgroup 
of cells that demonstrated stemness and differentiated 
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into heterogenous populations of tumor cells [5, 6]. CSCs 
have also been identified in solid cancers like colorectal 
carcinomas [7]and ovarian [8] and liver cancers [9]. 
They also demonstrate self-renewal and differentiation 
properties [10] and are responsible for tumor heterogeneity 
and high recurrence rates of many cancers [4]. 

Bladder cancer is highly recurrent, metastatic and 
heterogenous, thereby resulting in poor prognosis [11]. 
It is postulated that bladder cancer stem cells are partly 
responsible for the clinical characteristics and complex 
biological behavior of bladder cancer [12]. Therefore, 
understanding the role of CSCs in bladder cancer is critical 
to gain insights into the mechanisms responsible for high 
recurrence and metastasis. Additionally, it would help 
identify novel therapeutic avenues and facilitate better 
prognosis. In this review, we focus on the new frontiers 
and progress in the study of bladder cancer stem cells.

ORIGIN OF BLADDER CANCER STEM 
CELLS

Bladder cancer types

The 2 types of bladder cancers, namely non-muscle 
and muscular bladder cancers originate from two different 
pathways [13]. Studies with transgenic mice revealed that 

normal stem cells with HRAS or FGFR3 mutations can 
transform into BCSCs that develop into superficial non-
muscle invasive bladder cancer, whereas stem cells with 
p53/Rb/PTEN gene mutations transform into BCSCs that 
initiate muscular invasive bladder cancer [14]. Further, 
transgenic mice with continuous activation of HRAS 
gene developed non-invasive bladder cancer, whereas 
transgenic mice with UPII promoter-SV40T gene in 
combination with persistent inactivation of p53 and pRb 
gene developed invasive bladder cancer [15]. These 
studies postulated that BCSCs probably originated from 
transformed transgenic stem cells.

The origin of bladder cancer stem cells

The topic about the origin of CSCs is still 
controversial [16, 17]. It is widely assumed that CSCs 
may arise from normal stem cells having suffered gene 
mutations [18] and the generation of CSCs from normal 
stem cells is complex [17]. By single cell sequencing, 
Yang et al showed that bladder cancer stem cells (BCSCs) 
originated from bladder cancer stem cells (BCSCs) or 
bladder cancer non-stem cells (BCNSCs) with clonal 
homogeneity among BCSCs and BESCs or BCSCs and 
BCNSCs [19]. Apart from stem cells, CSCs can also 
originate from progenitor cells or differentiated cells that 
undergo de-differentiation or tumor cells that gain stem 
cell properties or fusion cells [16]. 

Figure 1: The origin of bladder cancer stem cells.
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Several common markers of BCSCs including 
CD44+, EMA-, 67LR+, BCMab1+ [20, 21]are located in the 
basal cell layer of bladder tumor leading to more debates 
regarding the source of BCSCs. Theoretically, if all the 
markers are from a specific cell type in bladder cancer, it 
is assumed that BCSCs may have originated from mutated 
normal stem cells. On the other hand, if the markers are 
expressed on different normal cell types, then the BCSCs 
may be derived from progenitors or differentiated cells that 
acquired de-differentiation properties due to mutations, 
thereby leading to different subgroups of BCSCs (Figure 
1). 
Normal urothelial stem cells

Colon cancer stem cells generally originate from 
intestinal epithelial stem cells expressing Lgr5 [22]. BrdU 
pulse-chase labeling assays suggested that the urothelial 
stem cells were located in the basal cell layer [23]. This 
was further confirmed by mitochondria DNA mutation 
experiments [24]. Nitrosamine induced bladder cancer 
model confirmed that invasive bladder cancer originated 
from stem cells from basal cell layer [25]. These studies 
suggested that BCSCs originated from urothelial stem 
cells in the basal cell layer.

Urothelial stem cell

Urothelial, bone marrow and adipose stem cells are 
all capable of repairing bladder damage [26]. Therefore, 
these stem cells are possible sources of BCSCs. The gram-
negative bacterium, Helicobacter pylori is a carcinogen 
that recruits bone marrow derived cells (BMDCs) in 
gastric cancer [27]. However, in chemical induced bladder 
cancer, BMDCs are associated with inflammation in 
response to tumor and not related to tumorigenesis [28]. 
Basal cells

BCSCs were found to be CD44+CK5+CK20- that 
were characteristic basal cell markers [5]. Yang et al. 
showed that CD44+ cells were in the basal cell layer of 
normal urothelium and urothelial carcinoma [20]. Shin 
et al demonstrated that muscular invasive bladder cancer 
were derived specifically from Sonic hedgehog (SHh) 
expressing basal cells [25]. 
Intermediate stratum cells

The cells within the intermediate layer express 
different levels of CD44, which has been identified also 
as the BCSC marker [20]. Lineage tracing experiments in 
a mouse tumor model demonstrated that papillary cancer 
cells mainly originated from the intermediate layer [20]. 
Further, Brant et al thought that mutations of the fibroblast 

Figure 2: Hedgehog signaling pathway.
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growth receptor FGFR3 in intermediate layer cells might 
help intermediate stratum bladder cells transform into 
malignant low-grade papillary carcinoma and urinary 
epithelial hyperplasia [12]. These experiments showed 
that non-muscle invasive bladder stem cells may originate 
from the intermediate layer cells. 
Umbrella cells

The muscular invasive bladder cancer of intracavity 
type showed aberrant expression of transcription factors 
PPARG, ESR1, and FGFR3 [22]. Also, they expressed 
umbrella cell markers such as keratin 20 [29]. This 
suggested that BCSCs that develop into muscle invasive 
bladder cancer are derived from umbrella cells. 
Bladder cancer cells

Cancer stemness is affected by genotype 
heterogeneity, epigenetic alterations and tumor 
microenvironment [30]. The interaction of tumor 
cells with tumor associated fibroblasts, macrophages, 
perivascular stroma and endothelial cells is critical for 
their survival in hypoxic and low nutritional conditions. 
The CSC-like phenotype of bladder cancer is observed 
during late stages of tumor development suggesting that 
the early bladder cancer cells may transform into CSCs 
through mechanisms such as epithelial mesenchymal 
transformation (EMT), dedifferentiation, and hypoxia 
[31].

Identification of bladder cancer stem cells

BCSC surface markers

Bladder cancer stem cells were identified for the 
first time in 2009 via the markers used to isolate normal 
stem cells [32]. So cell surface markers are traditionally 
used to isolate BCSCs. Since the biological behavior and 
phenotypes of tumor cell lines may have changed due 
to long-term in vitro culturing, primary or early passage 
tumor cell lines are ideal for isolating and identifying of 
BCSCs. 

Chan et al. demonstrated that 40% of more 
than 300 bladder transitional cell carcinoma patient 
samples contained CD44+ cells. They further showed 
CD44 expressing subpopulation of cells in serial 
xenograft experiments with fresh patient samples and 
the tumorigenicity of CD44+ bladder cancer cells was 
found to be 10-200 times higher than CD44- bladder 
cancer cells when transplanted in immunodeficient mice 
[5]. The CD44+ cells maintained heterogeneity of the 
primary tumor after sequential transplantation, thereby 
complying with the functional standard for stem cells [5]. 
In vitro clonal sphere formation studies have been widely 
used to evaluate the stemness of tumor cells. In one such 
experiment, the CD44 splice isomer (CD44v6) was used 
to separate the CD44v6+ epithelial membrane antigen 
negative (EMA-) stem cell subtype from bladder tumors 

Figure 3: Notch signaling pathway.
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[33]. 
Further, the 67LR+CEACAM- BCSCs were 

identified using two surface markers, namely, the 67kDa 
basal layer laminin receptor (67LR) and carcinoembryonic 
antigen related cell adhesion factor 6 (CEACAM6); 67LR 
is expressed in the junction of tumor stroma and found in 
80% of high-grade invasive bladder cancer; CEACAM6 
is a non-specific poor reaction antigen [33]. In both 
experiments, the stem cell subgroups with special tumor 
characteristics were isolated using cell surface markers 
that were normally expressed in the urinary epithelial 
basal cells. 

ALDH1A1 is another widely used bladder cancer 
stem cells marker. By in vitro sphere formation assays 
and in vivo xenograft experiments, it was shown that 
ALDH1A1+ cells had better colony formation and 
tumorigenicity characteristics than ALDH1A1- cells 
[34]. Moreover, the colony formation and tumorigenicity 
properties of BCSCs were significantly reduced by shRNA 
knockdown of the ALDH1A1 gene. Also, the ALDH1A1+ 
cells were subtypes of CD44+ cells and may represent 
more primitive BCSCs [34].

Since the CSC markers are complex, BCSCs have 
also been isolated using other markers. For example, 
Li et al. combined 2 monoclonal antibodies of human 
bladder cancer against BCMab1 and CD44 to isolate the 
BCMab1+CD44+ subgroup with strong proliferative and 

self-renewal properties that were associated with stem 
cells [35].
Side population cell

The biological features of stem cells can also be 
used to isolate CSCs. Stem cells highly express the ATP-
binding cassette transporter in order to pump out drugs. 
This characteristic has been utilized to sort CSCs based 
on their ability to efficiently efflux the DNA fluorescent 
dye Hoechst 33342 and isolate the side population cells by 
FACS. Compared to other cells, the side population cells 
demonstrate colony formation, self-renewal and multi-
directional differentiation characteristics that are typical 
of CSCs [36]. 

MOLECULAR MECHANISMS OF 
BLADDER CANCER STEM CELLS

Both normal stem cells and CSCs are characterized 
by their ability to self-renew. Signaling pathways related 
to the stemness maintenance and plasticity regulation 
of normal stem cells such as Hedgehog, Notch and 
Wnt are also involved in the stemness maintenance of 
CSCs including BCSCs. In addition, the tyrosine kinase 
receptor signaling pathway, interleukin-6 and tyrosine 
kinase 1 signaling pathways also play an important role in 
regulating the stemness of solid CSCs.

Figure 4: Wnt signaling pathway.
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Hedgehog signaling pathway

Hedgehog signaling pathway (Figure 2) plays an 
important role in regulating embryogenesis and includes 
three homologous hedgehog genes namely Sonic 
Hedgehog (SHh), Indian Hedgehog (IHh) and Desert 
Hedgehog (DHh). Among these, SHh is highly expressed 
[37]. The hedgehog ligand binds to the transmembrane 
protein receptor Patched 1 (PTCH) and activates both the 
GLI transcription factor and the transmembrane protein 
receptor, Patched 1, which are inhibited by Smoothened 
(Smo) [38]. Aberrant activation of this pathway is 
central to development of a variety of tumors and their 
chemotherapy resistance [39]. Hence, inhibition of any of 
these factors may inhibit CSCs and therefore is a potential 
therapeutic target.

Notch signaling pathway

Notch signaling pathway (Figure 3) plays an 
important role in intercellular communication and 
cell fate determination during embryogenesis and in 
adult cells [40]. The pathway includes four receptors 
(Notch1~Notch4) and five ligands that regulate 
expression of multiple target genes [41]. When the 
Notch ligand binds to its receptor, the extracellular and 
transmembrane domains of the receptor are degraded by 
metalloproteinases and the secretory enzyme, respectively, 

thereby releasing the notch intracellular domain [42]. The 
soluble intracellular domain is imported to the nucleus 
and activates its target genes. The Notch signaling 
pathway is hyperactivated in a variety of tumors and is 
involved in maintaining the stemness of CSCs [43]. In 
melanomas, Notch4 interacts with CSCs which express 
CD133 and ABCG2 to promote melanomagenesis [44]. 
In medulloblastoma, sustained high expression of Notch2 
significantly increases the number of medulloblastoma 
stem cells [45-48], whereas the inhibition of Notch 
signaling decreases the medulloblastoma stem cells and 
suppresses carcinogenesis [49].

Wnt signaling pathway

The Wnt signaling pathway (Figure 4) is another 
important signaling pathway involved in embryogenesis 
and cell proliferation, survival and development [50, 
51]. It is involved in stemness and maintenance of CSCs 
[52]. Wnt signaling maintains the stem cell pool and 
prevents their differentiation by stabilizing cytoplasmic 
β-catenin levels [53]. The main components of the Wnt 
signaling pathway include the extracellular factor Wnt, 
the transmembrane receptor, β-catenin, the “destruction 
complex”, and the transcription factor referred to as T 
cell factor (TCF). Wnt signaling is generally activated 
when both frizzled (FZD) and lipoprotein receptor-related 
protein (LRP) bind to Wnt.

Figure 5: Drug resistant mechanism of BCSCs.
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After activation, the Wnt protein bound to the cell 
surface receptor FZD and LRP5/6 triggers intracellular 
signal transduction resulting in activation of the Dsh 
protein [54]. Activated Dsh then binds to Axin and Frat1 
to form a complex with GSK-3β and APC. Then, Frat1 
mediates the release of GSK-3β from Axin resulting 
in accumulation of dephosphorylated β-catenin. 
Dephosphorylated β-catenin is transported to the nucleus 
to activate the target genes including c-myc, stromelysin, 
fibroblast growth factor, epithelial cell growth factor 
and cyclin D1. Expression of these genes promotes 
tumorigenesis. Thus, tumorigenic β-catenin mutation 
results in aberrant Wnt signaling in the CSCs, thereby 
inducing tumorigenic proliferation [55].

Other signaling pathways

Aberrant activation of the JAK-STAT signaling 
pathway has been shown to induce tumorigenesis [56, 57]. 
STAT3 activation is required for the tumorigenic functions 
of multiple CSCs [57-60]. IL-6 cytokine that is critical for 
the stemness of normal stem cells that also regulates CSCs 
by modulating OCT2, CD44 and SOX2 gene expression. 
The IL6/JAK/STAT3 signaling pathway helps maintain 
plasticity of breast CSCs and also activates mTORC1-
STAT3 signaling pathway to maintain BCSC stemness 
[37, 41]. The tumorigenic tyrosine kinase receptor also 
contributes to stemness maintenance and chemotherapy 
resistance of non-small cell lung cancer stem cells [61].

DRUG RESISTANT MECHANISM OF 
BCSCS

The high recurrence rates of papillary bladder cancer 
as well as high invasiness and metastasis of myometrial 
invasive bladder cancer are attributed to BCSCs [12, 
15, 62-64]. Also, recurrent bladder cancers are usually 
chemoresistant, although the primary cancer is sensitive 
to chemotherapy [65]. There are two possible reasons for 
the chemoresistance. First, the chemotherapeutic drugs are 
unable to access the core of the tumor [64]; second, the 
BCSCs are chemoresistant [65, 66]. In fact, chemotherapy 
in combination with stem cell targeted therapy is the most 
promising therapy currently available for bladder cancer 
[67]. Therefore, it is important to identify the mechanisms 
that contribute to chemoresistance of BCSCs and deciphere 
ways to suppress or eliminate it to improve the prognosis 
of bladder cancer patients. The mechanisms that contribute 
to chemoresistance mechanisms of bladder cancer stem 
cells are: (1) active pumping out of chemotherapy drugs 
by the BCSCs; (2) enzymatic breakdown of drugs and 
their metabolites rendering them ineffective; (3) inhibition 
of programmed cell death (apoptosis) and (4) regulation 
of cytokines and other immune substances that inhibit the 
anti-tumor immune response (Figure 5).

ABC transport proteins

The ABC transport proteins in stem cells, especially 
the Vallazapine-sensitive ABCG2, pump out intracellular 
metabolites, drugs and toxic substances [68]. This was 
previously used as the principle for isolating the side 
population (SP) CSCs [69]. The SP cells sorted from 
T24 human bladder cancer cell lines showed significant 
colony-forming ability upon subculturing and were 
tolerant to radiotherapy and chemotherapy [36]. This 
suggested that the ABC transport proteins contributed to 
the chemoresistance of BCSCs.

Acetaldehyde dehydrogenase (ALDH)

Acetaldehyde dehydrogenase (ALDH) is 
significantly overexpressed in BCSCs [70]. In xenograft 
studies of mouse colon cancer, the cyclophosphamide and 
its metabolites were oxidized and inactivated by ALDH, 
thereby helping tumor cells to survive chemotherapeutic 
treatment [71, 72]. Since ALDH is overexpressed in 
BCSCs, inactivation of chemotherapeutic agents and their 
metabolites by ALDH is a likely resistance mechanism for 
bladder cancer.

Antioxidant enzymes

During radiotherapy and chemotherapy, reactive 
oxygen species (ROS) that are generated in tumor 
cells, irreversibly damage the DNA, thereby resulting 
in tumor cell death [73, 74]. In epithelial CSCs, ROS 
levels were significantly lower as a result of robust free 
radical scavenging system that protected the tumor cell 
DNA from endogenous or exogenous ROS and oxidative 
damage [75, 76]. Also, urinary epithelial CSCs upregulate 
antioxidant enzymes like superoxide dismutase (SOD2) 
and Hemeoxygenase, thereby decreasing oxidative DNA 
damage [77]. The presence of these antioxidant enzymes 
leads to a significant increase in the viability of CSCs 
during chemotherapeutic treatment.

Apoptosis resistance

Urinary epithelial CSCs express high levels of IL11, 
IL18 and IL23 mRNA [70]. These interleukins promote in 
vitro survival and growth of tumor cells by activation of 
anti-apoptotic genes including cFLIP / FLAME-1 and Bcl-
xL [78]. High interleukin levels have also been reported 
in prostate, breast, bladder and colorectal cancers [78]. 
IL23 is involved in the activation of the STAT-3 pathway, 
which promotes tumor survival, proliferation, invasion 
and angiogenesis [79].

Therefore, cytokines produced by the BCSCs enable 
them to survive chemotherapy and mediate recurrence. 
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Therefore, to improve therapeutic outcomes, it is 
important to uncover the molecular mechanisms relevant 
for chemoresistance of BCSCs.

Targeted therapy for bladder cancer CSCs

Drug resistance is a barrier to the effectual remedy 
of most cancers. Although CSCs-targeting treatment is still 
far away from clinical use, it is still widely believed to be 
a promising approach to drug resistance and may create 
better curative effects on cancers [80]. However, we need 
to identify CSCs-associated genes with a comprehensive 
study on the genomic profiles of CSCs in order to establish 
intervention targets. By single cell sequencing, Yang et al 
identified 21 key mutation genes in BCSCs including 6 
genes,ETS1, GPRC5A, MKL1, AWR, PITX2 and RGS9BP 
that were reported for the first time in bladder cancer. 
Besides, co-mutagenesis of ARID1A, GPRC5A and MLL2 
by CRISPR/Cas9 technology significantly enhanced self-
renewal and tumor initiation properties of BCSCs [19]. 
This study explored the genetic basis of human BCSCs 
and demonstrated their phylogeny. Besides, cancer stem 
cell function also interacts with epigenetics. Histone 
modification and chromatin rearrangement mutations 
usually exist in CSCs [81], promoting tumour initiation in 
different mechanisms [82]such as influencing the genome 
integrity [83]or leading to epigenetic reprogramming in 
iPS [84].

Analysis of the heterogeneity of different CD44+ 
subsets in bladder transitional cell carcinoma demonstrated 
many proteins that are involved in self-renewal such as 
nuclear Bmi-1, Stat3, and β-Catenin. Also, Activated Gli1 
was found in 85% of CD44+ tumor cells suggesting that 
Gli1 was a potential molecular target [85]. 

The above mutations and abnormally expressed 
genes in CSCs are all potential therapeutic targets.

The monoclonal antibody therapy targeting tumor 
cell antigens is most effective among cancer treatments. 
Immunofluorescence and FACS analyses showed that 
CD47 is widely expressed in bladder urothelial carcinoma 
cells [32]. Compared to CD44- tumor cell subsets, 
higher CD47 expression was observed in CD44+ tumor 
stem cells. CD47 is immunosuppressive and inhibits 
macrophage phagocytosis by interacting with SIRPα, 
a plasma membrane protein that is mainly expressed on 
bone marrow cells including macrophages, neutrophils, 
eosinophils and dendritic cells [86]. Treatment with 
monoclonal anti-CD47 antibody can induce phagocytosis 
of macrophages in bladder cancer cells in vitro and 
significantly reduce tumor growth in bladder cancer 
xenografts in a dose-dependent manner in the recipient 
mice [32, 86]. 

The CSC-targeted chemo-radiotherapy, which 
is different from conventional chemo-radiotherapy, 
combined with small molecule inhibitors that target CSC-
specific signaling pathways are expected to be effective 

therapeutics in the future. 

CONCLUSIONS AND FUTURE PROSPECTS

The CSCs, which were first identified in human 
malignant blood tumors [87], have been subsequently 
identified in many solid tumors [10, 38, 88-90]. In vivo 
and in vitro experiments with tumor cells in genetically 
engineered mice has greatly advanced our understanding 
regarding cancer stem cell role, including insights 
regarding their relevance for clinical applications. 
However, clinical success from the point of view of CSCs 
needs further understanding and clinical development. 
Compared to CSCs in hematological malignant tumors, 
the solid tumor CSCs interact with a large number of 
endothelial cells, fibroblasts, and inflammatory cells. To 
some extent, CSCs isolated from solid tumors with one or 
several specific markers is not equal to the whole tumor 
mass [91]. Therefore, study and clinical applications 
regarding solid tumor CSCs need to consider cell-cell and 
cell-stroma interactions, which are highly complex and 
sometimes difficult to simulate. Also, the field of solid 
tumor CSCs is still developing and there is no consensus 
yet regarding the existence, origin and development 
mechanism of CSCs. These areas need robust scientific 
exploration.

In the 21st century, a variety of malignant tumors 
including bladder cancer have extremely poor prognosis. 
The CSCs that have been discovered in the past decade 
or two provide a novel perspective to anticancer therapy 
that needs to be pursued strongly. In regard to BCSCs, it is 
important to determine specific bladder cancer stem cells 
markers, isolate and identify the origin and role of different 
categories of BCSCs with self-renewal and differentiation 
ability. Greater understanding of the biology of BCSCs 
will provide important information regarding disease 
classification, prognosis, treatment and early intervention, 
which will all improve clinical outcomes. We believe that 
with the deep understanding of BCSCs, the diagnosis and 
treatment of bladder cancer will make great progress in 
the near future.
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