Research Papers:
Metabolic pathway for the universal fluorescent recognition of tumor cells
Metrics: PDF 1572 views | HTML 3403 views | ?
Abstract
Ana Fernandez-Carrascal1,*, Manuel Garcia-Algar1,*, Moritz Nazarenus1, Alicia Torres-Nuñez1, Luca Guerrini1, Neus Feliu2,3, Wolfgang J. Parak3, Eduardo Garcia-Rico4 and Ramon A. Alvarez-Puebla1,5
1Department of Physical Chemistry and EMaS, Universitat Rovira i Virgili, Tarragona, Spain
2Karolinska Institutet, Stockholm, Sweden
3Philipps-Universität Marburg, Fachbereich Physik, Marburg, Germany
4Department of Medical Oncology, Hospital Universitario HM Torrelodones, Torrelodones, Madrid, Spain
5ICREA, Barcelona, Spain
*These authors have contributed equally to this work
Correspondence to:
Eduardo Garcia-Rico, email: [email protected]
Ramon A. Alvarez-Puebla, email: [email protected]
Keywords: circulating tumor cells, breast cancer, optical sensing, glucose uptake, hyperoxia
Received: January 31, 2017 Accepted: June 05, 2017 Published: June 16, 2017
ABSTRACT
Quantification of circulating tumor cells (CTCs) in blood samples from cancer patients is a non-invasive approach to monitoring the status of the disease. Most of the methods proposed in the recent years are phenomenological and rely on the use of antibodies labelled with fluorophores, magnetic particles, or immobilized on surfaces to capture the CTCs. Herein, we designed and optimized a method that employs a glucose analogue labelled with a fluorophore which takes advantage of the different metabolic pathways of cancer cells to discern them from normal ones. Notably, we demonstrate that fluorescence signal in tumor cells can be greatly maximized by applying hyperoxia conditions without damaging the cells. These results are demonstrated by means of confocal fluorescence and flow-cytometry measurements in peripheral blood mononuclear cells (PBMC) extracted after Ficoll of human blood samples and spiked with a known concentration of MCF-7 tumor cells.
All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 18551