Research Papers:
Aspirin regulation of c-myc and cyclinD1 proteins to overcome tamoxifen resistance in estrogen receptor-positive breast cancer cells
Metrics: PDF 3205 views | HTML 3429 views | ?
Abstract
Ran Cheng1,*, Ya-Jing Liu2,*, Jun-Wei Cui1, Man Yang1, Xiao-Ling Liu1, Peng Li1, Zhan Wang1, Li-Zhang Zhu1, Si-Yi Lu1, Li Zou1, Xiao-Qin Wu1, Yu-Xia Li2, You Zhou2, Zheng-Yu Fang2, Wei Wei1
1Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
2Institute of Biomedical Research, Shenzhen PKU-HKUST Medical Center, Shenzhen, 518036, China
*First authors
Correspondence to:
Wei Wei, email: [email protected]
Zheng-Yu Fang, email: [email protected]
Keywords: aspirin, ER-positive breast cancer, c-myc, cyclinD1, tamoxifen resistance
Received: December 28, 2016 Accepted: March 09, 2017 Published: March 17, 2017
ABSTRACT
Tamoxifen is still the most commonly used endocrine therapy drug for estrogen receptor (ER)-positive breast cancer patients and has an excellent outcome, but tamoxifen resistance remains a great impediment to successful treatment. Recent studies have prompted an anti-tumor effect of aspirin. Here, we demonstrated that aspirin not only inhibits the growth of ER-positive breast cancer cell line MCF-7, especially when combined with tamoxifen, but also has a potential function to overcome tamoxifen resistance in MCF-7/TAM. Aspirin combined with tamoxifen can down regulate cyclinD1 and block cell cycle in G0/G1 phase. Besides, tamoxifen alone represses c-myc, progesterone receptor (PR) and cyclinD1 in MCF-7 cell line but not in MCF-7/TAM, while aspirin combined with tamoxifen can inhibit the expression of these proteins in the resistant cell line. When knocking down c-myc in MCF-7/TAM, cells become more sensitive to tamoxifen, cell cycle is blocked as well, indicating that aspirin can regulate c-myc and cyclinD1 proteins to overcome tamoxifen resistance. Our study discovered a novel role of aspirin based on its anti-tumor effect, and put forward some kinds of possible mechanisms of tamoxifen resistance in ER-positive breast cancer cells, providing a new strategy for the treatment of ER-positive breast carcinoma.
All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 16325