Research Papers:
LoLoPicker: detecting low allelic-fraction variants from low-quality cancer samples
PDF | HTML | Supplementary Files | How to cite
Metrics: PDF 2280 views | HTML 3127 views | ?
Abstract
Jian Carrot-Zhang1,2 and Jacek Majewski3,4
1 Cancer Program, The Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
2 Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
3 Department of Human Genetics, McGill University, Montreal, Quebec, Canada
4 Genome Quebec Innovation Centre, Montreal, Quebec, Canada
Correspondence to:
Jian Carrot-Zhang, email:
Keywords: somatic mutation detection, low allelic-fraction variants, high specificity, FFPE samples
Received: September 27, 2016 Accepted: December 27, 2016 Published: March 12, 2017
Abstract
Introduction: Although several programs are designed to identify variants with low allelic-fraction, further improvement is needed, especially to push the detection limit of low allelic-faction variants in low-quality, ”noisy” tumor samples.
Results: We developed LoLoPicker, an efficient tool dedicated to calling somatic variants from next-generation sequencing (NGS) data of tumor sample against the matched normal sample plus a user-defined control panel of additional normal samples. The control panel allows accurately estimating background error rate and therefore ensures high-accuracy mutation detection.
Conclusions: Compared to other methods, we showed a superior performance of LoLoPicker with significantly improved specificity. The algorithm of LoLoPicker is particularly useful for calling low allelic-fraction variants from low-quality cancer samples such as formalin-fixed and paraffin-embedded (FFPE) samples.
Implementation and Availability: The main scripts are implemented in Python-2.7 and the package is released at https://github.com/jcarrotzhang/LoLoPicker.

PII: 16144