Oncotarget

Research Papers:

Itraconazole exerts its anti-melanoma effect by suppressing Hedgehog, Wnt, and PI3K/mTOR signaling pathways

Guanzhao Liang _, Musang Liu, Qiong Wang, Yongnian Shen, Huan Mei, Dongmei Li and Weida Liu

PDF  |  HTML  |  Supplementary Files  |  How to cite

Oncotarget. 2017; 8:28510-28525. https://doi.org/10.18632/oncotarget.15324

Metrics: PDF 3037 views  |   HTML 5043 views  |   ?  


Abstract

Guanzhao Liang1, Musang Liu1, Qiong Wang1, Yongnian Shen1, Huan Mei1, Dongmei Li1,2, Weida Liu1

1Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China

2Georgetown University Medical Center, Washington, DC, USA

Correspondence to:

Weida Liu, email: [email protected]

Keywords: itraconazole, melanoma, hedgehog, Wnt, mTOR

Received: July 23, 2016     Accepted: January 06, 2017     Published: February 14, 2017

ABSTRACT

Malignant melanoma is the deadliest form of all skin cancers. Itraconazole, a commonly used systemic antifungal drug, has been tested for its anti-tumor effects on basal cell carcinoma, prostate cancer, and non-small cell lung cancer. Whether itraconazole has any specific anti-tumor effect on melanoma remains unknown. However, the goal of this study is to investigate the effect of itraconazole on melanoma and to reveal some details of its underlying mechanism. In the in vivo xenograft mouse model, we find that itraconazole can inhibit melanoma growth and extend the survival of melanoma xenograft mice, compared to non-itraconazole-treated mice. Also, itraconazole can significantly inhibit cell proliferation, as demonstrated by Ki-67 staining in itraconazole-treated tumor tissues. In in vitro, we show that itraconazole inhibits the proliferation and colony formation of both SK-MEL-28 and A375 human melanoma cells. Moreover, we demonstrate that itraconazole significantly down-regulates Gli-1, Gli-2, Wnt3A, β-catenin and cyclin D1, while it up-regulates Gli-3 and Axin-1, indicating potent inhibitory effects of itraconazole on Hedgehog (Hh) and Wnt signaling pathways. Furthermore, itraconazole significantly suppresses the PI3K/mTOR signaling pathway – indicated by the down-regulated phosphorylation of p70S6K, 4E-BP1 and AKT – but has no effect on the phosphorylation of MEK or ERK. Our data suggest that itraconazole inhibits melanoma growth through an interacting regulatory network that includes Hh, Wnt, and PI3K/mTOR signaling pathways. These results suggest that this agent has several potent anti-melanoma features and may be useful in the synergesis of other anti-cancer drugs via blockage of the Hh, Wnt and PI3K/mTOR signaling pathways.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 15324