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ABSTRACT

No biomarkers are available to predict relative clinical benefit from targeted 
therapies in patients with non-clear cell renal cell carcinoma (nccRCC). To identify 
candidate predictive markers, we investigated a set of cytokines and angiogenic factors 
(CAFs) in previously untreated patients with nccRCC participating in the phase II ESPN 
trial comparing first-line sunitinib to everolimus. Pre-treatment concentrations of 30 
CAFs were measured in plasma from 37 patients treated with everolimus (n=16) or 
sunitinib (n=21), and associated with progression-free (PFS) and overall survival (OS) 
after adjusting for potential confounders. High (>median) concentrations of soluble 
glycoprotein 130 (sgp130) were predictive of a longer PFS with sunitinib compared 
with everolimus (HR = 0.30; 95% CI: 0.11-0.85; P = 0.024). Significantly shorter PFS 
was noted, independently of treatment arm, in patients with high (>median) levels 
of IL-8 (HR = 3.13; 95% CI: 1.41-6.92), IL-13 (HR = 3.36; 95% CI: 1.49-7.58), and 
soluble tumor necrosis factor receptor II (HR = 2.21; 95% CI: 1.04-4.72). High IL-8 
levels were also associated with significantly shorter OS (HR = 3.55; 95% CI: 1.55-
8.14). Thus, using CAF profiling we identified candidate prognostic and predictive 
circulating biomarkers that can be used to inform therapeutic decisions in nccRCC.

INTRODUCTION

The non-clear cell types (nccRCC) account for 
approximately 25% of all renal cell carcinoma (RCC) cases 
[1, 2] and represent a genetically and histologically diverse 
group of cancers that, in descending order of prevalence, 
includes papillary, chromophobe, unclassified RCC, Xp11.2 
translocation RCC, and other rare subtypes [2]. Agents 
targeting the vascular endothelial growth factor (VEGF) or the 
mechanistic target of rapamycin (mTOR) [3] are less effective 
against nccRCC compared with the more common clear-
cell RCC (ccRCC) histology [4]. However, to date no other 
targetable pathways have been validated against nccRCC. 

To optimize therapeutic efficacy and help clinicians choose 
between upfront VEGF-directed agents vs mTOR inhibitors 
in nccRCC, predictive biomarkers need to be identified.

Molecular pathways associated with angiogenesis 
may be of relevance to a subset of nccRCC cases. 
Alterations of the von Hippel-Lindau (VHL) gene, a known 
hallmark of ccRCC, have been reported in approximately 
16% of nccRCCs [5]. Furthermore, mutations in the 
hepatocyte growth factor (HGF) receptor MET are often 
found in patients with papillary RCC [6]. Both VHL 
and MET crosstalk with the VEGF pathway and play 
a key role in tumor cell proliferation and angiogenesis. 
Hyperactivation of mTOR is also found in a subset of 
nccRCCs, providing rationale for therapeutic inhibition of 
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this signaling pathway [6]. Further supporting the molecular 
heterogeneity of nccRCCs, we recently profiled cytokines 
and angiogenic factors (CAF) in plasma of nccRCC patients 
and found that whereas some express high levels of pro-
angiogenic and inflammatory tumorigenic markers, others 
are characterized by relatively low concentrations of these 
CAFs [7]. We further found that elevated pre-treatment 
levels of CAFs including interleukin 8 (IL-8), tumor 
necrosis factor alpha (TNFα), soluble tumor necrosis factor 
receptor I (sTNF-RI), and soluble vascular endothelial 
growth factor receptor-2 (sVEGF-R2) were associated with 
worse prognosis in patients with nccRCC [7].

Sunitinib is a multitargeted antiangiogenic tyrosine 
kinase inhibitor (TKI) of vascular endothelial growth factor 
receptors (VEGFRs) that prolongs the progression-free 
survival (PFS) survival of patients with metastatic RCC, 
and has clinical activity in nccRCC [8, 9]. In addition, 
prospective trial data have shown that subgroups of patients 
with nccRCC may benefit from treatment with the mTOR 
inhibitor everolimus [10, 11]. The multicenter, open-label, 
randomized phase II ESPN trial (Everolimus versus Sunitinib 
Prospective Evaluation in Metastatic Non-clear cell Renal 
Cell Carcinoma) compared everolimus to sunitinib as 
frontline treatments in advanced nccRCC. It did not meet 
its primary endpoint of finding an improvement of PFS with 
everolimus over sunitinib when these agents were given as 
first-line therapy, although the median PFS was numerically 
longer with sunitinib than with everolimus (6.1 months 
versus 4.1 months) [12]. Following disease progression, 
patients crossed over to the drug they did not receive upfront. 
Overall survival (OS) did not differ between the patients 
who received upfront everolimus vs sunitinib. Exploratory 
subgroup analyses according to histology also did not reveal 
any differences in outcomes between the two therapies [12].

In this work, we profiled a broad set of plasma CAFs 
from patients enrolled in the ESPN trial to: (i) confirm 
and expand in an independent patient group our previously 
identified prognostic CAF candidates in patients with 
nccRCC, (ii) screen for CAFs predictive of differential 
benefit from sunitinib versus everolimus before any 
treatment is started, and (iii) identify common CAF 
profiles across the different nccRCC subtypes associated 
with distinct responses to therapy.

RESULTS

Baseline characteristics, CAF levels and patient 
outcomes

Baseline CAF levels and clinical information were 
analyzed from 37 patients in the ESPN trial. Table 1 and the 
supplementary table show that the demographics, baseline 
characteristics and CAF levels of each treatment group were 
well-balanced with the exceptions of SCF and sVEGF-R2, 
which were significantly higher in patients treated with 
sunitinib. After a median follow-up time of 22.6 months 

(range, 2.2 - 68), 28/37 (75.7%) had died and only 2 (5.4%) 
were alive without progression at the last follow-up visit. 
There was no statistically significant difference (p=0.101) 
in the median PFS for the everolimus group (2.7 months) 
compared with the sunitinib group (5.8 months). Similarly, 
the median OS for the everolimus group was 13.6 months 
vs. 11.4 months for the sunitinib group (p=0.32).

Prognostic and predictive value of pretreatment 
CAF levels

Multivariable Cox regression models identified 
that high levels of IL-8 (HR = 3.13; 95% CI: 1.41-6.92; 
p=0.005), IL-13 (HR = 3.36; 95% CI: 1.49-7.58; p=0.004), 
and sTNF-RII (HR = 2.21; 95% CI: 1.04-4.72; p=0.04) 
were the only biomarkers independently associated with 
shorter PFS (Figure 1A, 1C, 1D) irrespective of treatment 
group. In addition, high IL-8 levels were independently 
associated with significantly shorter OS in both treatment 
groups (HR = 3.55; 95% CI: 1.55-8.14; p=0.003) (Figure 
1B). These associations persisted after controlling 
for all other established prognostic factors, including 
performance status, IMDC or MSKCC risk groups.

Cox regression models evaluating the effect of 
IL-8, IL-13 or sTNF-RII on PFS (Figure 2) alone or in 
combination showed that patients with high levels of 
all three CAFs had significantly shorter PFS compared 
with those that had zero (HR = 43.5; 95% CI: 4.4-
500; p=0.001) or only one (HR = 6.5; 95% CI: 2.1-20; 
p=0.001) CAFs elevated. A similar trend was seen when 
comparing patients with three elevated CAFs vs those 
with 2, although it did not reach statistical significance 
(HR = 2.9; 95% CI: 0.97-8.5; p=0.057). These significant 
associations between the number of elevated CAFs 
and PFS persisted after adjusting for all major clinical 
and laboratory variables such as age, gender, IMDC or 
MSKCC risk groups, performance status, or histology.

Analyses of the two-way interaction between 
treatment group and each CAF showed that sgp130 was 
the only significant predictor of response to sunitinib 
compared with everolimus (p=0.031). Whereas patients 
with low baseline sgp130 levels had similar PFS when 
treated with either drug (HR = 1.28; 95% CI: 0.46-
3.60; p=0.637), patients with high sgp130 levels had 
significantly longer PFS when treated with sunitinib 
compared with everolimus (HR = 0.30; 95% CI: 0.11-0.85; 
p=0.024) (Figure 3). This effect was independent of tumor 
histology. No other pretreatment CAF levels were found 
to be significant predictors of a differential response to 
therapy. The magnetic bead-based assays used to measure 
IL-8, sTNF-RII, and sgp130 levels showed high intra-
assay precision with coefficients of variation (CV) <10% 
in all samples, and all samples were within the detection 
range. The IL-13 assay showed higher variability with CV 
>10% (but <20%) in 2/44 samples, as well as OOR values 
in 3/44 samples.



Oncotarget42151www.impactjournals.com/oncotarget

Unsupervised hierarchical clustering by baseline 
CAF levels

Unsupervised hierarchical clustering identified 
3 main groups of patients (Figure 4). The larger group 
(“angiogenic group”, n=15; 4 treated with everolimus 
and 11 treated with sunitinib) was characterized by low 
levels of proinflammatory factors and relatively higher 
levels of proangiogenic and hypoxia-associated factors 

such as sVEGF-R2, sVEGF-R3, TNFα, and E-selectin. 
The second group (“inflammatory group”, n=8; 6 treated 
with everolimus and 2 treated with sunitinib) had higher 
levels of interleukins (IL-2, IL-5, IL-6, IL-8, IL-10, IL-12, 
IL-13) and other proinflammatory mediators such as IFNγ. 
The third cluster of patients (“low CAF group”, n=14; 6 
treated with everolimus and 8 treated with sunitinib) had 
relatively lower concentrations of the CAFs defining the 
other two groups.

Table 1: Baseline characteristics of each treatment group

Everolimus (n=16) Sunitinib (n=21) p value

Agea 46.5 (42.0 – 62.5) 55 (50 - 62) 0.365c

Genderb

    Male 11 (68.8%) 11 (52.4%) 0.50d

    Female 5 (31.2%) 10 (47.6%)

Raceb

    Caucasian 15 (93.7%) 16 (76.2%) 0.206d

    Other 1 (6.3%) 5 (23.8%)

ECOG performance statusb

    0 5 (31.2%) 9 (42.9%) 0.515d

    1 11 (68.8%) 12 (57.1%)

MSKCC risk groupb

    Favorable 0 3 (14.3%) 0.153d

    Intermediate 15 (93.7%) 18 (85.7%)

    Poor 1 (6.3%) 0

IMDC risk groupb

    Favorable 0 3 (14.3%) 0.265d

    Intermediate 15 (93.7%) 15 (71.4%)

    Poor 1 (6.3%) 3 (14.3%)

Prior nephrectomyb

    No 2 (12.5%) 9 (42.9%) 0.071d

    Yes 14 (87.5%) 12 (57.1%)

Histologyb

    Papillary 5 (31.3%) 6 (28.6%) 0.469d

    Chromophobe 2 (12.5%) 4 (19.0%)

    Clear cell with sarcomatoid features 5 (31.3%) 6 (28.6%)

    Translocation 0 3 (14.3%)

    Unclassified 4 (25.0%) 2 (9.5%)

aYears; data are given as median values (interquartile range)
bCategorical variable; data in parentheses represent the percentage of each group
cMann–Whitney U test
dFisher’s exact test
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DISCUSSION

Our analysis of pretreatment CAF levels in patients 
with nccRCC identified plasma IL-8 concentration as a 
prognostic marker of PFS and OS. This is consistent 
with our previous profiling of an independent cohort 
of nccRCC, which showed elevated IL-8 levels to be 
associated with shorter OS [7]. High IL-8 concentrations 
have also been associated with shorter PFS in patients with 
clear-cell RCC [13, 14]. These results indicate that IL-8 is 
a robust prognostic biomarker. IL-8 is a pro-inflammatory 
cytokine that facilitates tumor invasion, angiogenesis, 
metastasis, and resistance to therapy [15, 16]. Although 
we previously found that baseline levels of sTNF-RI, 
sVEGF-R2 and TGF-α were associated with worse 
survival in nccRCC [7], we were unable to replicate these 
results in the present study. This may reflect the significant 
molecular heterogeneity of this tumor group and the small 
number of patients.

We found that high plasma IL-13 and sTNF-RII 
concentrations were associated with worse PFS. IL-13 is 
a key regulator of type 2 helper T cells (Th2) that suppress 
anti-tumor immune surveillance, thus facilitating cancer 
invasion and metastasis [17]. sTNF-RII is the circulating 
form of the membrane-bound TFN-RII, which mediates 

TNFα signaling via different pathways compared 
with TNF-RI [18]. It is released into the circulation 
via alternative mRNA splicing leading to loss of the 
transmembrane and cytoplasmic domains, or via shedding 
of the membrane-bound form within vesicles such as 
exosomes [19]. The plasma concentration of sTNF-RII 
significantly increases with tumor stage in patients with 
RCC [20], and has been shown to be associated with 
worse outcomes in patients with advanced chronic kidney 
disease [21]. In conjunction with prior evidence linking 
sTNF-RI to poor prognosis [7], our present results provide 
additional evidence that TNF signaling pathways have 
prognostic relevance in nccRCC. These observations will 
need to be confirmed in other nccRCC patient cohorts.

We identified high plasma sgp130 concentrations to 
be predictive of a better response to sunitinib compared 
with everolimus. Glycoprotein 130 (gp130) is a signal-
transducing receptor subunit involved in multiple 
inflammatory and tumorigenic pathways [22]. The soluble 
form of gp130 (sgp130) antagonizes the binding of IL-6 
to sIL-6R and selectively abrogates IL-6 trans-signaling, 
including the phosphorylation of signal transducer and 
activator of transcription 3 (STAT3) [23–25]. Mechanistic 
studies have indicated that sunitinib can crosstalk with this 
pathway by inhibiting STAT3 in RCC tumor cells [26]. 

Figure 1: Kaplan-Meier plots of progression-free survival (PFS) and overall survival (OS) in patients with advanced 
non-clear cell renal cell cancer. In (A) and (B), PFS and OS is shown according to baseline levels of interleukin-8. In (C) and (D), PFS 
is shown according to baseline levels of interleukin-13 and soluble tumor necrosis factor receptor II, respectively.
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The biological mechanism underlying the association 
between sgp130 and sunitinib efficacy in nccRCC 
warrants further study, particularly since we did not find a 
similar correlation between plasma IL-6 or sIL-6R levels 
and patient outcomes in our cohort. The first study to 
investigate pretreatment CAFs in RCC prior to sunitinib 
or everolimus therapy [14] used patients enrolled in the 
multicenter, randomized phase II RECORD-3 trial [27]. 
Only a minority of these patients had nccRCC. In addition, 
the study profiled a different set of CAFs, which did not 
include sgp130 or IL-13 [14].

The VEGF pathway is a major molecular target of 
sunitinib, and circulating sVEGF-R2 and sVEGF-R3 may 
serve as biomarkers of VEGF-dependent angiogenesis 
and cancer growth. Although reductions in sVEGF-R2 
and sVEGF-R3 levels have been shown to be associated 
with clinical response in patients with advanced RCC 
[28], baseline levels of these CAFs did not predict a better 
response with sunitinib compared with everolimus in our 

patients. This may be due to the lower dependence of 
nccRCC tumors on VEGF pathways.

In addition to the ESPN trial, the multicenter, open-
label, randomized phase II ASPEN trial also evaluated 
sunitinib versus everolimus in a nccRCC cohort [10]. 
In contrast to ESPN, ASPEN showed improved PFS in 
patients treated with sunitinib compared with those treated 
with everolimus, except in patients who had chromophobe 
RCC or poor-risk disease [10]. CAF profiling can 
complement tumor tissue or serum DNA diagnostics and 
provide additional information that can guide treatment 
decisions in such cases. Compared with tumor tissue 
sampling, CAF analysis is a much less invasive procedure 
that requires a simple blood draw. Longitudinal CAF 
profiling may also identify biomarkers for acquired 
resistance [29]. Although serum molecular DNA analyses 
can provide valuable diagnostic information, protein-
based assays offer additional opportunities for stratifying 
and monitoring disease activity because proteins are more 

Figure 2: Kaplan-Meier plot of progression-free survival (PFS) according to the number of elevated circulating 
cytokine and angiogenic factors (IL-8, IL-13, or sTNF-RII).
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direct mediators of functions occurring within tumor cells 
and their microenvironment. Several robust commercial 
assays are available for general use, and the ones used in 
the present study showed high precision. Because sample 
preparation and storage can affect assay performance [30], 
the samples used in the present study were collected and 
processed in a standardized manner. Further studies will 
be needed to assess how handling variations can affect 
CAF measurements by magnetic bead-based assays such 
as those used in the present analysis.

Histopathological and molecular profiling have 
shown considerable heterogeneities between nccRCCs 
tumors [1, 2]. The present study investigated whether 
there are common CAF expression patterns between these 
histologically and genetically distinct tumors that can be 
clinically exploited. Unsupervised hierarchical clustering 
of CAF expression in our patient cohort revealed three 

distinct phenotypes. One group showed relatively low 
CAF concentrations. Another group is characterized by an 
“angiogenic” signature with high levels of proangiogenic 
factors and lower levels of inflammatory cytokines. 
This group of patients demonstrates relatively higher 
levels of HGF and may be more likely to respond to 
MET inhibitors such as cabozantinib. We plan to test 
this hypothesis by performing baseline CAF profiling 
in nccRCC patients treated with cabozantinib or other 
c-MET inhibitors. Conversely, the “inflammatory” 
group of tumors demonstrated high concentrations of 
inflammatory mediators and relatively low expression of 
proangiogenic molecules. This is a similar pattern to the 
one we previously reported in clear-cell RCC [31]. Tumor-
infiltrating lymphocytes and other immune cells may 
trigger their own suppression by producing inflammatory 
cytokines that drive the expression of immune checkpoint 

Figure 3: Kaplan-Meier plot of progression-free survival in patients with advanced non-clear cell renal cell cancer and 
high baseline levels of soluble glycoprotein 130 treated with sunitinib versus everolimus.
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molecules such as programmed death-ligand 1 (PD-L1) 
[32]. Thus, tumors belonging to the “inflammatory” group 
may be susceptible to PD-L1 or programmed cell death 
1 (PD-1) inhibitors, which would shift the balance of the 
inflammatory milieu towards anti-tumor cytotoxic immune 
responses.

The present study is limited by its exploratory nature 
and modest number of patients. Although our validation 
of prior findings is reassuring, the possibility of false 
positive associations remains. In addition, due to the lack 
of statistical power, we may have failed to detect clinically 
relevant CAF signatures. Therefore, our results will need 
to be independently evaluated in separate and larger 
patient cohorts.

In conclusion, this is the first study to specifically 
investigate in nccRCC the prognostic and predictive 
value of circulating biomarkers in patients treated with 
a multitargeted antiangiogenic TKI or an inhibitor of the 
mTOR pathway. Our findings support the use of CAF 
analyses to define distinct subgroups of patients with 
nccRCC who have a worse prognosis or will benefit less 
from sunitinib compared with everolimus. We identified 
prognostic biomarkers related to the TNF pathway 
(sTNF-RII) and immunomodulation (IL-8 and IL-13). In 
addition, mediators of IL-6 signaling such as sgp130 may 
affect response to therapy in these patients. If validated 
prospectively, these results will help optimize trial design 
and guide therapeutic decisions.

Figure 4: Unsupervised hierarchical cluster analysis (lower expression levels in blue, higher levels in red) of circulating 
cytokine and angiogenic factors (CAFs) in 37 patients with advanced non-clear cell renal cell carcinoma prior to 
therapy with either everolimus or sunitinib. The 4 CAFs determined to be prognostic or predictive in multivariable analyses are 
highlighted in yellow. The histological subtype of each tumor is also shown. Three main clusters of patients are identified: the “angiogenic” 
group (n=15) was characterized by relatively higher levels of proangiogenic and hypoxia-associated factors such as sVEGF-R2, sVEGF-R3, 
TNFα and selectin. The “inflammatory” group (n=8) had higher levels of proinflammatory mediators such as IL-2, IL-5, IL-6, IL-8, IL-10, 
IL-12, IL-13 and IFNγ. A third cluster of patients (n=14) had relatively low expression of the CAFs defining the other two groups.
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MATERIALS AND METHODS

Patients

The study design and patient population of 
the ESPN trial (NCT01185366) have been reported 
elsewhere [12]. ESPN enrolled a total of 73 patients 
with papillary, chromophobe, collecting duct, Xp11.2 
translocation, unclassified, or clear-cell with >20% 
sarcomatoid transformation RCC patients who had not 
received prior systemic therapy. Patients were randomized 
1:1 to standard dosing schedules of either sunitinib or 
everolimus. The primary endpoint was PFS. Secondary 
endpoints included OS and objective response rate (ORR). 
The study was approved by the institutional review board 
or ethics committee of each participating center and was 
conducted in accordance with the Declaration of Helsinki 
and good clinical practice guidelines.

Collection of plasma samples and CAF analysis

All patients in this study signed informed consent 
for the collection of blood for biomarker profiling. Only 
patients with pre-treatment blood samples (44/73 patients) 
were included in the study. Specimens were obtained 
within 14 days prior to the first dose of the study drug. 
Peripheral venous blood for plasma preparation was 
collected into 8-mL sodium citrate tubes (BD, Franklin 
Lakes, NJ, http://www.bd.com), and stored at -80°C. 
Prior to CAF analysis, samples were thawed at room 
temperature and then centrifuged at 14000 g for 10 
minutes at 4°C. Clear supernatant was then transferred 
to a labeled polypropylene tube. The concentrations 
of 44 CAFs were measured at the antibody-based 
proteomics core at Baylor College of Medicine (Houston, 
TX) using 7 different Luminex magnetic bead-based 
assays (Kit#HSTCMAG28SPMX13, HKI5MAG-
99K-02, HAGP1MAG-12K-09, HCYP2MAG-62K-03, 
HSCRMAG-32K-07, HCVD4MAG-67K-01, and 
HBNMAG-51K-01; EMD Millipore, Billerica, MA, http://
www.emdmillipore.com) according to the manufacturer’s 
protocol. The CAFs that were profiled were selected based 
on their biological relevance to RCC, the mechanism 
of action of sunitinib and everolimus, commercial 
availability, as well as prior data indicating clinical 
relevance [7, 31, 33]. The plates were analyzed using the 
Bio-Plex 200 system (Bio-Rad, Hercules, CA, http://www.
bio-rad.com). Each sample was analyzed in duplicate, and 
the analysis was blinded to clinical outcome. CAFs with 
>25% out of range (OOR) samples were omitted from the 
analysis. Accordingly, 30/44 CAFs (68.2%) were included 
in the analysis reported in this manuscript (Supplementary 
Table 1). For these 30 CAFs, OOR values were treated 
following the same convention previously established by 
our group [7, 31]: we replaced above-range OOR values 
with the highest measured value for the corresponding 

CAF, whereas below-range OOR values were replaced by 
the lowest value on the standard curve divided by half.

Statistical analysis

The Kolmogorov-Smirnov test was used for analysis 
of variance of all continuous variables. The choice of 
methods for statistical comparisons of continuous variables 
was based on whether the data distribution permitted 
parametric or non-parametric analysis. Categorical 
variables were compared using Fisher’s exact tests. We 
dichotomized values for each CAF as “low” if ≤ median 
and “high” if > median. This dichotomization cut point 
has consistently yielded optimal results and produces more 
equally balanced subgroups [7, 31, 33, 34]]. To determine 
which CAFs were independently associated with PFS and 
OS, we constructed multivariable Cox regression models 
using a fully stepwise selection algorithm, based on 
likelihood ratio tests, that required covariables to have a p 
value <0.1 for entry (to increase sensitivity) and <0.05 for 
retention in the model. Candidate variables included the 
30 CAFs as well as age, race, gender, prior nephrectomy, 
performance status, international metastatic renal cell 
carcinoma database consortium (IMDC) or Memorial 
Sloan Kettering Cancer Center (MSKCC) risk group, 
tumor histology, and treatment group. Log-minus-log 
survival plots were constructed to confirm the proportional 
hazard assumption.

To identify variables that were associated with 
a different response to sunitinib versus everolimus, 
we constructed additional Cox proportional hazards 
models testing the two-way interaction terms of CAFs 
with treatment group, using PFS as the outcome. To 
identify distinct CAF-based molecular phenotypes 
among nccRCC patients, we performed unsupervised 
hierarchical clustering using Ward’s method (“ward.D2” in 
R) and Pearson’s correlation coefficient as a dissimilarity 
measure. For this analysis, CAF values were standardized 
to a mean of zero and standard deviation of one.

A p value of <0.05 was considered statistically 
significant unless otherwise specified. Given the 
exploratory nature of this study, no adjustment for multiple 
comparisons was made based on our prespecified analysis 
plan. Unless otherwise indicated, all statistical analyses 
were completed using SPSS 23.0 (IBM Corp, Armonk, 
NY) and R (Foundation for Statistical Computing, Vienna, 
Austria) [35].

Abbreviations

BMP9: bone morphogenetic protein 9; CAF: 
cytokine and angiogenic factor; GM-CSF: granulocyte-
macrophage colony-stimulating factor; HGF: hepatocyte 
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gamma; IL-10: interleukin-10; IL-12: interleukin-12; 
IL-13: interleukin-13; IL-5: interleukin-5; IL-6: 



Oncotarget42157www.impactjournals.com/oncotarget

interleukin-6; IL-8: interleukin-8; IMDC: international 
metastatic renal cell carcinoma database consortium; 
MSKCC: Memorial Sloan Kettering Cancer Center; 
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L1: programmed death-ligand 1; PFS: progression-free 
survival; PLGF: placental growth factor; RCC: renal 
cell carcinoma; SCF: stem cell factor; SDF1: stromal 
cell-derived factor 1; sgp130: soluble glycoprotein 
130; sIL-4R: soluble IL-4 receptor; sIL-6R: soluble 
IL-6 receptor; sTNF-RI: soluble tumor necrosis factor 
receptor I; sTNF-RII: soluble tumor necrosis factor 
receptor II; sVEGF-R2: soluble vascular endothelial 
growth factor receptor-2; sVEGF-R3: soluble vascular 
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apoptosis-inducing ligand; TNFα: tumor necrosis factor 
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