Research Papers:
Mcl-1 expression and JNK activation induces a threshold for apoptosis in Bcl-xL-overexpressing hematopoietic cells
PDF | HTML | Supplementary Files | How to cite
Metrics: PDF 1969 views | HTML 2919 views | ?
Abstract
Yu Zhang1,*, Xin Li1,*, Shisheng Tan1, Xinyu Liu2, Xinyu Zhao2, Zhu Yuan2, Chunlai Nie2
1Departmant of Oncology, Guizhou People’s Hospital, Guizhou, China
2State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, P. R. China
*These authors contributed equally to this work
Correspondence to:
Chunlai Nie, email: [email protected]
Shisheng Tan, email: [email protected]
Keywords: 2-DG, ABT-199, Apoptosis, Bcl-xL, Mcl-1
Received: November 02, 2016 Accepted: December 20, 2016 Published: December 26, 2016
ABSTRACT
The regulation of Mcl-1 expression is necessary for the induction of cancer cell apoptosis by ABTs such as ABT-737, ABT-263 and ABT-199. However, the reduction in Mcl-1 expression is not sufficient for initiating cell death in hematopoietic cancer cells with high Bcl-xL expression. Here, we demonstrate that 2-deoxyglucose (2-DG) enhanced the effect of ABT-199 to induce cell apoptosis in hematologic malignancies with up-regulated Bcl-xL expression. Our study revealed that 2-DG could decrease glucose-dependent and Akt-independent Mcl-1 expression, which is mediated by the mechanistic target of rapamycin complex 1 (mTORC1) pathway. Moreover, the combination of 2-DG and ABT-199 triggered c-Jun NH2-terminal kinase (JNK) phosphorylation and subsequent Bcl-xL degradation, whereas 2-DG and ABT-199 alone had little effect on JNK activation. Therefore, the combination of 2-DG and ABT-199 initiated cell death through the reduction of Mcl-1 expression and JNK activation. Our study could provide a clinical theoretical basis for the use of ABT-199 in hematologic malignancies with excessive Bcl-xL expression.
All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 14223