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ABSTRACT

Packed with biological information, extracellular vesicles (EVs) offer exciting
promise for biomarker discovery and applications in therapeutics and non-invasive
diagnostics. Currently, our understanding of EV contents is confined by the limited cells
from which vesicles have been characterized utilizing the same enrichment method.
Using sixty cell lines from the National Cancer Institute (NCI-60), here we provide
the largest proteomic profile of EVs in a single study, identifying 6,071 proteins with
213 common to all isolates. Proteins included established EV markers, and vesicular
trafficking proteins such as Rab GTPases and tetraspanins. Differentially-expressed
proteins offer potential for cancer diagnosis and prognosis. Network analysis of vesicle
quantity and proteomes identified EV components associated with vesicle secretion,
including CD81, CD63, syntenin-1, VAMP3, Rab GTPases, and integrins. Integration of
vesicle proteomes with whole-cell molecular profiles revealed similarities, suggesting
EVs provide a reliable reflection of their progenitor cell content, and are therefore

excellent indicators of disease.

INTRODUCTION

Extracellular vesicles (EVs) represent a diverse
population of communication pods released from cells.
Ranging in size from 40 to 1000 nm, EVs include
exosomes, microvesicles, and apoptotic bodies. Generally,
exosomes are described as 40-150 nm endocytically-
derived vesicles formed by intraluminal budding of
multivesicular bodies (MVBs) which are released
following MVB fusion with the plasma membrane.
Microvesicles are generally larger than exosomes, and
are shed by budding and fission events directly at the cell
membrane. Varying in size, apoptotic bodies are formed
by plasma membrane blebbing, and can contain packaged
organelles following initiation of cell death. Further
sub-populations of vesicles likely exist, reflecting the
heterogeneity of cellular biology encapsulated by EVs.

Extracellular vesicles have been implicated in a
number of different physiological processes, including
immune system modulation, cell-to-cell signaling, and
cell proliferation [1-5]. Accumulating evidence has

implicated EVs as major players in the growth, invasion,
and metastatic capacity of cancer cells [6, 7]. For example,
exosomes and microvesicles have been demonstrated to
transfer oncoproteins and nucleic acids from virally-
infected cells to uninfected neighboring cells, and likely
promote viral-associated tumor progression [8—11].
Systemic circulation of EVs can play a role in establishing
a tumor microenvironment, providing the “soil” for cancer
cell “seeding” to metastatic sites [12] and cancer patients
have been shown to have increased levels of circulating
EVs [13—15]. Recent research has begun to characterize
specific transmembrane proteins responsible for targeted
vesicle uptake by cells in common cancer type-specific
metastatic sites [16]. These circulating vesicles therefore
reflect a diverse form of intercellular communication that
can facilitate the progression of neoplastic growth and
tumor metastasis.

Though EVs likely contribute to the progression
of some types of cancer, our knowledge of vesicular
communication is still incomplete. One reason is due
to the heterogeneity of EV sub-populations. Though
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the complexity of EV populations has burdened our
understanding of their roles in cell biology, the existence
of a variety of EVs may be beneficial in the context of
cancer diagnostics and prognostics. One challenge in
diagnosing cancer is that tumors often represent a diversity
of cell types and genetic mutations; a tissue biopsy is
limited in its ability to reflect this diversity. However,
circulating EVs are derived from an all-inclusive
population of cells, and therefore have the potential to
more accurately reflect the entirety of a heterogeneous
tumor [17]. While some limitations of vesicle-based
biopsies exist, such as disparities in EV quantities released
from different tumor cells and the ability to detect small
changes in the populations of circulating vesicles, EV-
based detection offers alternatives to current diagnostic
approaches. Current screening or monitoring tests of
cancer progression, such as prostate-specific antigen
(PSA; prostate), CA-125 (ovarian), alpha fetoprotein
(liver), or CA19-9 (pancreatic) often lack the sensitivity
or specificity to provide highly accurate clinical diagnoses
[18-20]. As EVs provide membrane-bound protected
cargo that can reflect cell-specific pathological processes,
we and others propose that these vesicles bear great
potential as circulating biomarkers that could improve the
current strategies of cancer diagnosis [21-24].

A better understanding of the contents of these
vesicles is crucial to the development of EV clinical
applications. A current limitation in proteomic analyses of
EVs from cancer cells is the narrow number of cell lines
studied using comparable and reproducible methods. Here,
we characterize 60 diverse human cancer cells derived
from 9 distinct tissue types from the National Cancer
Institute (NCI-60). The NCI-60 panel was originally
compiled by the Developmental Therapeutics Program for
high-throughput drug screening, and has led to a number
of successful chemotherapeutic drugs used to treat cancer
patients [25]. The NCI-60 has also contributed vastly
to a better understanding of cancer cell biology and the
identification of many novel oncogenic DNA mutations
[26, 27]. Since then, the panel has become publicized for
cancer research purposes, and a full whole-cell proteomic
analysis of each individual cell line has been published
[28]. Proteomic and RNA analyses of EVs from subsets
of the NCI-60 panel have recently been investigated,
providing initial characterizations of cancer vesicle
contents [29-32]. Research using cell lines from the NCI-
60 panel has also contributed to evidence demonstrating
the roles of EVs in the growth and survival of tumor
cells, multidrug resistance [33-35], immune evasion [36],
cancer cell migration [37] and impact on cells in the tumor
microenvironment [38]. Subsets of the panel have also
been used to study general mechanisms of EV biogenesis
and release from cells [39, 40]. Recently, we compared the
vesicle secretion of NCI-60 cell lines using nanoparticle
tracking analysis (NTA). Results highlighted differences in
secretion rates and sizes of vesicles from cancer cells [41].

With this in mind, we conducted a comparative
analysis of proteins from EVs secreted by the NCI-
60 cells. To our knowledge, this is the largest single-
study proteomic investigation of vesicles to date. In this
study, 6,071 unique proteins were identified, including
213 common to all 60 cell types, which likely reflect
the common machinery involved in EV biogenesis.
Differentially expressed proteins were also identified.
Many of these proteins are associated with tissue type,
and could therefore serve as markers of EV origin or aid
as future diagnostic biomarkers of cancers. To investigate
proteins involved in mechanisms of EV biogenesis and
secretion, the EV proteome was further analyzed to
look for associations between protein accumulation
(spectral counts) and vesicle secretion quantity. Finally,
the proteomic analysis of NCI-60 EVs was compared to
existing cellular proteome and transcriptome datasets.
These analyses revealed that the EV proteome closely
reflects the transcriptome and proteome of the cell of
origin, supporting the hypothesis that EVs are a rich
source of diagnostic and prognostic markers. Overall,
this extensive proteomic dataset provides a foundation
to further investigate general mechanisms of vesicle
biogenesis, and demonstrates the incredible biomedical
and clinical utilities of extracellular vesicles.

RESULTS AND DISCUSSION

Cancer-cell derived EVs contain core vesicle
machinery

To characterize and compare extracellular vesicle
proteomes, EVs were harvested from 60 cell lines (NCI-
60). As pure EV sub-populations are empirically difficult
to isolate, a method of enriching a broad spectrum of
vesicles was used in this study to contribute to a greater
understanding of global EV content. We have previously
demonstrated that the ExtraPEG method enriches for EVs
with a comparable purity [42] to sucrose-purified samples
following growth of cells for a period of time in serum-
free medium, as performed in this study [43] (Figure
1A). Vesicles harvested using this method were found
to contain extracellular vesicle markers by western blot
[41, 43]. Nanoparticle tracking and electron microscopy
revealed sizes and morphology consistent with those
previously reported for EVs [41, 43]. Here, vesicles were
enriched using identical methods from individual cell lines
across nine represented histological origins: breast, brain
(CNX), colon, kidney, leukemia, lung, melanoma, ovary,
and prostate. Collectively, 6,071 unique proteins were
identified in EVs (Supplementary Table S1). To examine
the overlap between known vesicular proteins, NCI-60
EV proteins were compared to those in the Vesiclepedia
compendium of extracellular vesicle molecular data [44].
Nearly 4,500 proteins were previously identified in EVs
(Figure 1B and Supplementary Table S2). Over 1,500
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proteins not previously characterized as EV components
were further discovered. Because so many unreported
vesicular proteins were identified, we aimed to ensure that
proteins found in this study were congruent with those
previously found in EVs. To increase the stringency of our
dataset and characterize common EV proteins, only those
identified in at least two-thirds all cell line isolates ([NCI-
60]Smngem) were compared to the Vesiclepedia compendium.
These proteins showed over 97% overlap with proteins
currently characterized as extracellular vesicle proteins.
The entire proteome of NCI-60-derived EVs was
further characterized systematically using qualitative
and quantitative analyses. An average of nearly 1,900
proteins were identified per cell line across all tissue
types (Figure 1C). Calculation of the median logarithmic
abundance of proteins revealed a normal distribution of
spectral counts across the panel (Supplementary Figure
1D). The number of total EV proteins found within each
tissue was similar across the panel (Figure 1D), with the
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exception of the prostate cancer group, likely explained
by the underrepresentation of this tissue type (n=2).
Strikingly, 213 proteins were identified that were common
to every vesicle sample, representing the core NCI-60 EV
proteome (Supplementary Table S3). These proteins likely
reflect essential proteins packaged into EVs from many
different cellular origins, and provide insight into general
mechanisms of EV biogenesis, entry, protein trafficking,
and secretion. Proteins found in at least one cell line from
each exclusive tissue type were also compiled to represent
tissue-specific markers (Supplementary Table S4).
Notably, 165 proteins were exclusively found in leukemia-
derived EVs, while fewer unique proteins were in other
tissue types. As EVs from many cancer cells have been
shown to be enriched in functional integrins [16, 45], these
data may reflect detectable differences between cancer
EVs originating from circulating hematopoietic cells
versus those typically attached to basement membrane
matrices through integrin linkers.
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Figure 1: Proteomic analysis of extracellular vesicles secreted by the NCI-60 cells. A. Centrifugation protocol and
general workflow of EV enrichment for LC-MS/MS analysis. B. Venn diagram of proteins identified in EV samples in the NCI-60 and

NCI-60]

stringent

datasets compared to the Vesiclepedia database of proteins. See also Supplementary Table S2. C. Average spectral counts per

cell line across tissue types. Parentheses indicate the number of cell lines represented in each tissue type. Data are represented as mean +
STD. D. Total proteins including common proteome (dotted line) and tissue-specific proteins identified across the nine histological origins

represented. See also Supplementary Table S3 and S4.
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Enrichment analysis highlights the subcellular
localization and function of cancer cell
extracellular vesicle proteins

To characterize the cargo abundant in the majority
of cancer EVs, proteins found in the [NCI-60]Stringem dataset
were further analyzed. Functional and pathway analyses
were conducted using the Database for Annotation,
Visualization, and Integrated Discovery (DAVID) v6.7.
Not surprisingly, proteins enriched in protein localization,
transport, and vesicular functions were identified in our
data set (Figure 2A). Many ribosomal proteins involved in
translation processes were also enriched, similar to results
seen in previous studies [32, 46]. Ribosomal components
may facilitate cell-to-cell communication by directly
translating mRNAs present in EVs following fusion with
target cells. Pathway analysis revealed proteins to be
enriched in RNA processing and proteolytic processes,
as well as cytoskeletal and endocytic, pathways (Figure
2B). Comparison to the Vesiclepedia database revealed the
majority of proteins to have a subcellular localization in
endolysosomal or cytoplasmic compartments (Figure 2C).
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Figure 2: Enrichment analysis of EV proteins identified.

Altogether, these analyses demonstrate an abundance of
proteins with recognized functions in protein and vesicle
trafficking from the endosomal pathway, and cytoskeletal
involvement that likely plays a role in both exosome
and microvesicle secretion. The presence of proteins
involved in RNA processing suggests an active process of
RNA sorting and packaging, and offers insight into how
biologically active RNA messages are communicated
between cells.

A common method of characterizing EVs
relies on the presence of accepted protein markers
enriched in vesicle populations. Recent research has
described different subpopulations of EVs from cells
by identifying vesicle specific protein markers [47]. We
compared commonly used exosome and microvesicle
markers described across EVs derived from the NCI-
60 cells (Figure 2D). Historically, these markers have
been considered universal, however, only tetraspanin
CDS81, Alix, and HSC70 were found across all samples.
Tetraspanins CD63 and CD9, as well as TSG101,
Syntenin-1, and Flotillin-1 were identified in at least
two-thirds of the samples. MMP-2, a previously
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reported microvesicle marker [32] was found in only
16 EV samples across the panel. Many of these protein
markers have historically been used to describe and
quantify extracellular vesicles regardless of their cellular
localization or method of harvest. However, data presented
here show wide variation in the levels of traditional EV
markers, with some being completely undetectable in
certain EV preparations. We subsequently analyzed EV
proteins identified in this study to characterize those
common to all cells in the NCI-60 panel. Proteins within
this dataset involved in vesicle-mediated transport and
protein localization were identified, and were largely
enriched in GTPase function, including Rab proteins 1A,
2A, 5C, 6A, 7A, 8A, 10, 11B, and 14 (Supplementary
Table S5). These proteins likely represent more universal
markers of EVs that future EV researchers should consider
for characterization. Notably, as various cells may package
these proteins to different degrees within the same number
of EVs, the correlation of vesicle quantity across cell
lines to any one of these markers is complex. This poses
challenges for researchers, as quantitative protein assays
such as ELISA or immunoblot analyses are often used to
determine vesicle quantity following EV enrichment.

EV proteomes cluster by tissue type and contain
proteins unique to cancer type

Next we aimed to compare vesicle proteomes
across individual cancer cells in the NCI-60 panel. As
extracellular vesicles have been suggested to carry proteins
that reflect their progenitor cell, it was hypothesized that
EVs released from cells of the same tissue type would
share similarities in protein content. Principal component
analysis (PCA) demonstrated that EV proteins clustered
based on tissue type (Figure 3A). Of note, one leukemia
cell line (K562) did not cluster with the remaining cancer
EVs (Supplementary Figure 1C). The K562 cell line is an
erythroleukemia derived from the pleural effusion of a
patient with chronic myelogenous leukemia (CML), and is
positive for the Philadelphia translocation on chromosome
22, creating the chimeric BCR/ABL fusion gene. The
BCR/ABL gene has been demonstrated to downregulate
many cell adhesion molecules [48], which may, in part,
explain the divergence from other cell-derived EVs. For
instance, in this study, ICAM3, an adhesion molecule
abundantly expressed in leukocytes, was found in high
levels among all leukemia-derived EVs except the K562
EVs. In light of these findings, the K562 cell line was
excluded from all subsequent analyses.

Unsupervised hierarchal clustering was used to
further examine the congruity of EV proteomes from cells
of the same tissue origin. Samples from colon, kidney,
leukemia, lung, and melanoma cancers clustered closely
within tissue type (Figure 3B). Breast, CNS, and ovarian
cancer EVs demonstrated sub-clustering within each

tissue type, suggesting similarities between cancer types
that may not be universal across the tissue of origin. Part
of these unique clustering patterns may reflect metastatic
potential of particular cell lines. For example, highly
metastatic breast cancer cells (BT-549 and MDA-MB-231)
cluster together away from other non-metastatic breast cell
lines.

Strikingly, a number of proteins were observed
to be differentially expressed in vesicles secreted from
adherent cell lines compared to cells in suspension culture.
For example, Agrin (AGRN), a basement membrane
glycoprotein that contains heparan and chondroitin
sulfate residues was absent only in the leukemia-derived
EVs (Figure 3C). On the other hand, adhesion molecule
ICAM3 was present predominately in EVs secreted from
leukemia cancer lines grown in suspension (Figure 3D).
As integrin and heparan sulfate proteoglycan receptors
have been demonstrated to play a significant role in the
uptake of vesicles into cells [16, 49], these observations
provide new targets for future studies of tissue-specific
mechanisms of vesicular protein trafficking and targeting
of EVs to recipient cells.

Recently, a urine-based exosome diagnostic assay
has been demonstrated to predict high-grade prostate
cancer among men with elevated PSA levels [50].
Likewise, glypican-1, a heparan sulfate proteoglycan, was
found to be detected in only cancer-derived exosomes,
and was further shown to be correlated with pancreatic
cancer progression in patients, providing a non-invasive
early diagnostic tool for pancreatic cancer [23]. In the
NCI-60 panel, glypican-1 was identified in only 35 of
60 cancer EV isolates. This suggests an even stronger
likelihood of novel protein markers identified across
all samples in this study (or all samples within a tissue-
type) to be useful as early diagnostic markers of cancers.
Furthermore, the evidence showing differences in EV
contents from circulating cells (leukocytes) compared to
basement membrane-adhered cells is particularly valuable
when considering liquid biopsy techniques to isolate
vesicles, as proteins such as ICAM3 could serve as a tool
to distinguish blood cell-borne EVs from those secreted
into circulation by organ-derived or metastatic cells.

Extracellular vesicle-based liquid biopsies also
carry the potential for early detection of cancer cells
that normally have limited access to blood circulation.
The proteomic analysis of NCI-60 EVs confirmed the
presence of premelanosome protein (PMEL) in vesicles
secreted from all melanoma cancer cell types (Figure 3E).
This melanocyte-specific transmembrane glycoprotein has
previously been shown to be sorted into endosomes for
exosomal secretion [51]. As melanocytes are ordinarily
confined to the epidermal layers of the skin, access to
deeper blood vessels is not usually achieved unless
vertical growth of cancerous cells occurs. Therefore, a
circulating (plasma) melanocyte-specific exosomal protein
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marker could serve as an early indication of various types
of invasive melanoma growth.

Moreover, several vesicular proteins were identified
in a very small population of cancer lines. For instance,
Tenascin XB (TNXB), an extracellular matrix glycoprotein
was found in abundant levels only in PC-3 cells, a high
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study, the presence of periostin was confirmed in both
metastatic breast cancer lines (MDA-MB-231 and HS
578T), but was not found in other non-metastatic breast
cancer-derived EVs. Additional proteins including raftilin
(a lipid-raft regulating protein), fibulin-7 (an adhesion
molecule), and plasminogen activator inhibitor 1 (a serine
protease inhibitor that has previously been implicated in
aggressive tumor growth [53, 54]) were exclusively found
in metastatic breast cancer EVs. Likewise, latent-TGFf3-
binding protein-1 was identified preferentially in lung
cancer cells with high invasive capacity (A549, HOP-62,
and HOP-92) [55]. In all, over 1,500 proteins were found
to be differentially expressed across the 60 EV samples
(Supplementary Table S6). Interestingly, comparison of
whole cell protein expression reported by Gholami et al.
to EV expression in Figure 3C-3E [28] revealed these
differentially expressed proteins to be largely conserved
between cell and vesicle isolates. For instance, ICAM3
was chiefly absent in non-leukemic tumor cells, while
Agrin was underrepresented in leukemia-derived cells
(Supplementary Figure S2). Likewise, PMEL was found
in substantial levels in melanoma cell lines compared
to other cancer cells. These findings suggest that
differentially expressed proteins found in cancer EVs may
reflect cellular phenotypes. Furthermore, the specificity
of protein content in vesicles from individual cancer cell
types promises great potential in further investigation
of these novel markers for early cancer detection and
prognostic monitoring.

Conserved vesicular proteins are correlated with
EV secretion

Recently, we described relative extracellular vesicle
secretion quantities across the NCI-60 panel [41]. As many
EV proteins in samples across the study were identified in
different quantities, we hypothesized that some of these
proteins are likely involved in vesicle biogenesis and
therefore correlate to the total number of vesicles secreted
by cells. To investigate proteins involved in common
pathways of EV formation, levels of proteins in the [NCI-

]stringent were compared to previously collected vesicle
secretion quantities [41] (particles per cell; Supplementary
Table S7) by weighted gene coexpression network analysis
(WGCNA).

In this analysis, hierarchal clustering of proteins
(Figure 4A) demonstrated inter-related expression patterns
and produced 15 clusters of highly related proteins
(modules) that were detected by dynamic tree cut, an
optimal method used to detect clusters of data within a
dendrogram [56]. Modules were then correlated to vesicle
secretion patterns across the panel (Supplementary Table
S8). The yellow module containing 88 proteins was
most significantly correlated with particle secretion, and
therefore served as our target protein cluster (Figure 4B).

Here, protein significance is defined as the
correlation of the protein expression profile across the
NCI-60 panel with particle secretion levels. Module
membership further measures the correlation of
protein expression patterns across the members of the
yellow module. We found protein significance and
module membership to be positively correlated in the
yellow module (p = 0.006) (Figure 4C). These findings
suggest that proteins clustered into the module show
interconnected profiles of expression in vesicles that
positively correlated with the number of vesicles secreted
by cells.

Enrichment analysis of the yellow module
demonstrated proteins were significantly enriched in cell
adhesion and growth, GTPase activity, and cell surface
receptor signaling (Figure 4D), and included CD63, CD&81,
VAMP3, syntenin-1, and SEC22B, among other vesicular
proteins. Strikingly, 25 of the yellow module proteins were
identified in EVs from every cancer cell in the panel (Table
1), supporting the hypothesis that commonly identified
EV components likely play a role in EV biogenesis. In
light of the variation in current EV markers seen (Figure
2D), these represent important proteins that could more
accurately compare vesicle quantities across a diversity of
cell lines and certainly warrant future investigation.

Cancer vesicle proteomes reflect the molecular
composition of progenitor cells

Given the clinical utility of using extracellular
vesicles for cancer diagnostics, we investigated the
relationships between EV protein composition and
whole cell content. Previously, cellular protein and
transcript expression profiles were compared using
co-inertia analysis (CIA) to examine the concordance
between these molecular datasets across the NCI-60
panel [28]. Here vesicle protein levels were similarly
compared to cellular protein and RNA expression. In
Figure 5A, each of the three datasets (vesicle proteome,
cellular proteome, and cellular transcriptome) is
plotted for individual cell lines. Markers represent the
relative position of a cell line in respective proteome or
transcriptome space, where the divergence of datasets
is delineated by connecting vectors. Molecular factors
driving tissue-dependent clustering were plotted as
overlapping protein (cell and vesicle) and RNA transcript
data in the same orientation (Figure 5B). In variable
space, RNA or protein coordinates farther from the origin
are more highly expressed in cell lines projected in the
same direction. Whole cell RNA profiling showed the
strongest ability to differentiate samples, demonstrated
by farther distances of RNAs from the origin in variable
space. However, vesicle protein was observed to show
similar magnitudes of projection from the origin as whole
cell protein, demonstrating the ability of EV proteins to
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reflect cell protein profiling. A histogram of eigenvalues
(Figure 5C) demonstrated that the first and second co-
inertia axes represented 49% of the total variance (sum of
the eigenvalues) seen in the datasets plotted, accounting
for 31% and 18% of the variance respectively. The three
datasets were also examined to consider how much
variance of the eigenvalues was contributed by each
dataset (Figure 5D). No single dataset contributed to
both co-inertia axes alone, indicating that the analysis
examining the relationships between vesicle proteomes

and cellular transcriptomic and proteomic profiles was
dependent on all datasets.

In general, melanoma, leukemia and colon cells
demonstrated tissue-type clustering based on their
unique proteomic and transcriptomic profiles, similar to
clusters previously observed (Figure 3A-3B). The vesicle
protein dataset showed considerable association with
the whole cell molecular profiles, indicated by the short
and randomly oriented arrows (Figure 5A). Overall, the
similarity of vesicle protein to cellular RNA and protein
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Table 1: Common cancer proteins associated with vesicle secretion

Average spectral count per

Protein ID Gene symbol Protein name sample
P07355 ANXA2 Annexin A2 288.53
P1808S ARF4 ADP-ribosylation factor 4 18.05
P35613 BSG Basigin 79.12
P13987 CD59 CD59 glycoprotein 34.40
P60033 CDS81 CD81 antigen 83.18
P05534 HIAA HLA class | histocompatibility antigen, A-24 alpha 9282
chain
PO1112 HRAS GTPase HRas 40.58
PODMV9 HSPAIB Heat shock 70 kDa protein 1B 142.08
P04792 HSPBI Heat shock protein beta-1 74.40
P05556 ITGBI Integrin beta-1 168.10
Q08380 LGALS3BP Galectin-3-binding protein 550.05
P08590 MYL3 Myosin light chain 3 10.32
P60660 MYL6 Myosin light polypeptide 6 72.50
P22392 NME?2 Nucleoside diphosphate kinase B 75.72
PO1111 NRAS GTPase NRas 7.08
P51148 RABS5C Ras-related protein Rab-5C 51.18
P51149 RAB7A Ras-related protein Rab-7a 64.45
P63000 RACI Ras-related C3 botulinum toxin substrate 1 43.45
P11234 RALB Ras-related protein Ral-B 38.67
P61224 RAPIB Ras-related protein Rap-1b 111.35
P61586 RHOA Transforming protein RhoA 81.78
075396 SEC22B Vesicle-trafficking protein SEC22b 21.85
P37802 TAGLN2 Transgelin-2 87.45
P61077 UBE2D3 Ubiquitin-conjugating enzyme E2 D3 7.58
Q15836 VAMP3 Vesicle-associated membrane protein 3 28.08

resulted in RV coefficients of 0.63 and 0.57, respectively.
Notably, several cell lines demonstrated greater variation
between vesicle protein and whole cell profiles, including
two lung lines (NCI-H322M and HOP-62), one colon cell
(HCC-2998), and an ovarian cell (IGROV1). To more
closely examine proteins found in discordance between
whole cell and EV proteomes, proteins found in the core
vesicle proteome were compared to reported cellular
expression data [28]. In total, 144 proteins identified in
the core vesicle proteome in this study were similarly
identified in cell lines, as reported by Gholami et al.
Comparison of expression levels between whole cell
and vesicular isolates revealed several outlying proteins

enriched in vesicles or cells alone (Figure SE-5H and
Supplementary Table S9). While proteins such as Actin
(ACTGT!) or Glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) were found abundantly in both cells and EVs,
tubulin proteins (TUBB4B and TUBA1C) were enriched
in lung cancer vesicles compared to cells, and actin-
binding protein Moesin (MSN) was enriched in vesicles
from IGROV1 and HCC-2998 cells. Strikingly, Galectin-
3-binding protein (LGALS3BP) was enriched in multiple
EV isolates compared to respective progenitor cells. These
proteins probably represent targets of selective vesicular
packaging, and future focus will likely advance our
understanding of vesicular trafficking mechanisms.
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Figure 5: Comparison of vesicular proteome with cellular proteome and transcriptome. A. Co-inertia analysis of cellular
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Altogether, the congruency of tissue dependent
clusters across datasets and resemblance between the
vesicle and cellular molecular profiles substantiates the
ability of EV profiles to discriminate between tissue
types and supports a significant clinical value of EVs as
circulating biomarkers. As EVs can closely reflect the
molecular profile of their cellular origin, they therefore
represent circulating biological archetypes of healthy or
diseased cells.

CONCLUSIONS

In the past decade, it has become clear that
extracellular vesicles are an important component of
cellular communication informing fields including
cancer biology, immunology, and virology. The data
here provide a means to better understand the protein
cargo involved in this ubiquitous messaging system with
implications for further use in clinical diagnostic practice.
In the characterization of vesicular protein contents from
the NCI-60 cells, we have expanded the list of known
vesicle proteins by nearly twenty percent (based on the
Vesiclepedia database of characterized vesicle proteins),
significantly growing our foundation of knowledge of the
nature of this communication system. Of these proteins
identified, 213 were common to all cell lines. This core
EV proteome likely represents conserved structural and
signaling components of vesicles, and molecular factors
involved in vesicle biogenesis and secretion. In support
of this, 25 of the 213 proteins were found to be positively
correlated with EV secretion levels. One of the largest
obstacles currently faced by EV researchers is accurately
defining these vesicles subtypes. The data presented in
this study offer a substantial step forward in the ability
to define EV populations, and to enrich vesicles for
studies in all areas of EV research. As our ability to
isolate distinct vesicle sub-populations continues to
improve, this substantial database will likely provide
an important backbone for understanding more unique
vesicle contents.

In this study, critical differences in extracellular
vesicle contents were also identified which may directly
lead to the discovery of biomarkers of cancer, ultimately
affecting diagnosis and prognosis of the increasingly
prevalent disecase. As emerging large-scale “omic”
datasets progressively demonstrate significant potential
in the future of individualized medicine, it is expected
that extracellular vesicles will play an important role
in modern health and disease-state surveillance. In this
study, the close resemblance of vesicle and cellular
molecular profiles suggests that extracellular vesicles
reliably represent their progenitor cells. They are therefore
excellent candidates for bearing biomarkers, and will
increasingly find a place amongst clinical strategies for
combating diseases like cancer.

EXPERIMENTAL METHODS

Cell culture

Sixty cell lines from the National Cancer Institute
(NCI-60) were acquired from the NCI Developmental
Therapeutics Program. Cells were seeded based on growth
rate (doubling time) to achieve 80-90% confluence after
two to three days. Cells were cultured in RPMI-1640
medium (Lonza, 12-702Q) supplemented with 10%
fetal bovine serum (FBS; Seradigm, 1400-500), 2 mM
L-glutamine (Corning, 25-005-CI), 100 units penicillin/
streptomycin (Corning, 30-002-CI), and 100 units:100
pg/mL:0.25 pg/mL  antibiotic/antimycotic  (Corning,
30-002-CI). Following the two to three day culture,
complete medium was aspirated and cells were washed
with warmed sterile phosphate buffered saline (PBS). To
minimize contaminating serum proteins in downstream
mass spectrometry analysis and aid in the identification
of lower abundance EV proteins, cells were cultured in
serum-free medium for a further 48 hours before EV
enrichment. Previous results have demonstrated that EVs
harvested using this method are as pure as sucrose-cushion
purified vesicles [43].

EV enrichment and protein quantification

Following the 48 hour serum-free culture, medium
was harvested. Cell viability at the time of harvest was
measured by counting cells stained with 0.2% trypan
blue in PBS (Sigma, T8154) or AO/PI (Nexcelom
Bioscience, CS2-0106) with an automated cell counter
(Cellometer Vision, v2.1.4.2, Nexcelom Bioscience).
We have previously demonstrated that cell viability
does not significantly contribute to the number or size
of particles secreted by the NCI-60 cells when viabilities
are maintained greater than 85% [41]. In this study,
cell viabilities following the forty-eight hour serum-
free culture approximated those observed previously
in complete medium. EVs were enriched using the
ExtraPEG method previously described [43]. Briefly, cell-
conditioned medium was centrifuged at 500 g for five
minutes to pellet and discard cells, followed by 2,000 g
for 30 minutes to remove cellular debris. Supernatant was
pooled from several flasks to amass sufficient material
(200-500 mL) for downstream proteomic analysis. A 1:1
volume of 2X PEG solution [16% (w/v) polyethylene
glycol, 1 M NaCl] was added. Samples were inverted
to mix, then incubated overnight. The next day, the
medium/PEG mixture was centrifuged at 3,214 g for one
hour. Crude vesicle pellets were resuspended in 1 mL of
particle-free PBS and re-pelleted by ultracentrifugation
at 100,000 g for 70 minutes. Final pellets were lysed in
strong lysis buffer [5% SDS, 10 mM EDTA, 120 mM Tris-
HCI pH 6.8, 2.5% B-mercaptoethanol, 8 M urea] with the
addition of HALT protease inhibitor (Thermo, 78438).
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Vesicular protein was quantified using the fluorescence-
based EZQ™ Kit (Thermo, R33200).

SDS PAGE and in-gel digestion

For protein purification and separation by sodium
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE), 20 pg of vesicular protein from each sample
was loaded into a 4-20% polyacrylamide gel (Lonza,
59511). Following electrophoresis, gels were fixed and
Coomassie-stained as previously detailed [57]. Samples
were fractionated by cutting gel lanes into five sections.
Sections were subsequently subdivided into 1 mm? cubes
before trypsin-digesting as described [43].

Protein identification and quantification

Following protein digestion, samples were
submitted to the Florida State University Translational
Science Laboratory for liquid chromatography tandem
mass spectrometry (LC-MS/MS) analysis. The digest
was freeze-dried and resuspended in 30 pL 0.1% FA
and analyzed by liquid chromatography tandem mass
spectrometry (LC-MS). An externally calibrated Thermo
LTQ Orbitrap Velos nLC-ESI-LTQ-Orbitrap (high-
resolution electrospray tandem mass spectrometer) was
used with the following parameters: A 2 cm trap column of
100 pm internal diameter (i.d.) (SC001 Easy Column from
Thermo-scientific) was followed by a 10 cm analytical
column of 75 pm i.d. (SC200 Easy Column from Thermo-
scientific). Both trap column and analytical column had
C18-AQ packaging. Separation was carried out using
Easy nanoLC II (Thermo-Scientific) with a continuous,
vented column configuration. A 5 uL sample was aspirated
into a 20 uL sample loop and loaded onto the trap. The
flow rate was set to 300 nL/min for separation on the
analytical column. Mobile phase A was composed of 99.9
H,O (EMD Omni Solvent), and 0.1% formic acid, and
mobile phase B was composed of 99.9% ACN and 0.1%
formic acid. A 1 hour linear gradient from 0% to 45% B
was performed. The LC eluent was directly nano-sprayed
into an LTQ Orbitrap Velos mass spectrometer (Thermo
Scientific). During the chromatographic separation, the
LTQ Orbitrap Velos was operated in a data-dependent
mode and under direct control of the Xcalibur software
(Thermo Scientific). The mass spectrometry data were
acquired using the following parameters: 10 data-
dependent collisional-induced-dissociation (CID) MS/MS
scans per full scan. All measurements were performed at
room temperature and three technical replicates were run
for each sample.

Raw data collected from each of five fractions
were pooled by sample and analyzed using MaxQuant
(v1.5.3.30). The mass spectrometry data were analyzed
using the integrated Andromeda peptide search engine
and a recent (March 2016) UniProt knowledgebase

reviewed (Swiss-prot) human protein database.
The database was appended with a list of common
contaminants in MaxQuant, and search parameters
used were either the default settings for this version of
the software, or as follows. Instrument type was set to
Orbitrap, using label free quantitation, and first search
peptide tolerance set to 10 ppm, and main search peptide
tolerance at 4.5 ppm. Digestion mode was set specific
for trypsin, with a maximum of two missed cleavages.
Fixed modifications included only carbamidomethyl
(C), and variable modifications included oxidation (M),
N-terminal acetylation, and phosphorylation (STY).
A maximum of five modifications were allowed per
peptide. False discovery rate was set to 0.01. The mass
spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium [58] via the PRIDE partner
repository.

Primary analyses were conducted with the
MaxQuant output data set (NCI-60). This dataset
represents all proteins identified in the study. To examine
proteins found in the majority of samples that reflect a
more commonly shared cancer EV proteome, a more
stringent protein set was used, and defined as [NCI-
601, ingent This data set includes only proteins found in at
least two thirds of all EV samples.

Differential expression as a function of
tissue origin

For differential expression and network analyses,
raw spectral count data were exported from the MaxQuant
software and imported into R statistical framework. The
spectral count based method has been demonstrated to
provide a reliable representation of protein abundance with
a linear dynamic range over several orders of magnitude
with similar sensitivity as ion peak intensity quantitation
[59—61]. Utilization of spectral counts was necessary for
our downstream pipeline analyses using DeSeq?2 for the
identification of differentially expressed proteins and
normalization for WGCNA and co-inertia analyses. Raw
peak intensity data are reported in Supplementary Table 1.

DESeq2 is a package originally designed for
analyzing read counts from RNA-sequencing datasets
and recently used to analyze other forms of biological
count data, including LC-MS/MS spectral count data
[62]. Normalization of spectral counts with DESeq2
considerably reduced the difference in sample depth
between samples (Supplementary Figure 1A and 1B).
PCA analysis of the top 500 variant proteins revealed one
sample with substantially different protein expression
profiles (K562) (Supplementary Figure 1C), which was
removed from further analysis. After normalization, a
likelihood ratio test was performed across all samples in
DESeq?2 to identify proteins with significantly different
patterns of expression between samples of different tissue

www.impactjournals.com/oncotarget

Oncotarget



origin. Proteins that returned an FDR-adjusted p-value (q
value) of less than 0.05 were considered significant.

Weighted gene coexpression network analysis
(WGCNA)

The WCGNA was originally implemented for
the analysis of transcriptomic microarray data, but has
recently been used to analyze RNA-seq and LC-MS/MS
proteomics datasets [63, 64]. To identify proteins that
are associated with the regulation of vesicle secretion,
a network analysis was performed with the WGCNA
package in the R statistical framework [65]. Tutorials for
WGCNA can be found at http://labs.genetics.ucla.edu/
horvath/CoexpressionNetwork/. WGCNA is a multi-step
analysis which involves: 1) generating a coexpression
matrix for gene (or protein) expression, 2) transforming
protein correlations into a adjacency matrix for network
construction, 3) grouping together proteins (modules)
that show high co-correlation, and 4) correlating an
eigenprotein, the first principle component of each
module, with a biological trait of interest. Importantly,
WGCNA avoids the extensive FDR-correction needed
to control for false positives in protein-wise differential
expression analyses, as there are many fewer modules in
the entire network than proteins.

Normalized [NCI—6O]stringem count data were
transformed in DESeq2 with a variance stabilizing
transformation using the “VST” function, and used as input
for WGCNA. The resulting count matrix was used as input
for WGCNA. We used the one-step network construction
and module detection function “blockwiseModules.”
Modules of co-regulated proteins across the vesicle
protein abundance profiles of the NCI-60 cell lines were
identified by first grouping proteins (nodes) together
into clusters of highly co-correlated members based on
their degree of co-correlation (edges). For measuring the
coexpression similarity between proteins, we used a signed
Pearson correlation. For adjacency matrix construction,
soft thresholding was used. The scale-free fitting index
approached a local maximum at = 12 (Supplementary
Figure S3). This threshold approximately achieves scale
free topology, meaning that the node degree distribution
approximately follows the power law. Therefore, the co-
correlation matrix was raised to the power of 12 to create
the adjacency matrix. Finally, the adjacency matrix was
converted into a topological overlap matrix, and the
corresponding dissimilarities (1 — the topological overlap
matrix) was used for module detection via hierarchical
clustering. The minimum number of proteins required per
module was set to 30, and the mergeCutHeight was set to
0.25, such that sufficiently similar modules were merged
revealing 15 modules. Module eigenproteins, a synthetic
measure of module belonging, were then related to the
quantity of vesicles secreted per cell previously collected
[28] by calculating Pearson correlation coefficients.

The module most significantly associated with particle
secretion was retained for enrichment analysis.

Comparison between vesicle and whole-cell
molecular profiles

Co-inertia analysis (CIA; [66, 67]) was used to
examine similarities between the vesicle proteome and
cellular proteome and transcriptome across the NCI-60 cell
lines. Microarray gene expression data was downloaded
from the NCBI Gene Expression Omnibus [68] (accession
number GSE32474; [69, 70]). Whole-cell proteome data
was obtained from the NCI60 proteome resource (http://
proteomics.wzw.tum.de/nci60; [28]). Spectral count data
from the whole-cell dataset was processed analogously to
the EV proteome dataset for comparability: raw spectral
count data published by Moghaddas Gholami et al. were
normalized with DESeq2 following removal of all proteins
not found with at least one count in 40 or more samples,
and further transformed with the VST function. NCI-60
cell lines not included in all three datasets were excluded
from this analysis, leaving 56 samples in total. Differences
between samples and molecular assays were analyzed and
visualized with co-inertia analysis using the R omicade4
package [71] in the R statistical framework.

Protein set enrichment analysis

To identify proteins previously found in EVs,
the Vesiclepedia database of vesicular proteins was
downloaded (Version 3, 9 Jan 2015) from microvesicles.
org/download. The Database for Annotation, Visualization,
and Integrated Discovery (DAVID) v6.7 [72, 73] was
used for functional (GOTERM_BP_FAT) and pathway
(KEGG_PATHWAY) analyses of proteins found in the
[NCI-60]_ ene dataset (Figure 2A-2B). Enrichment of
cellular compartment terms (Figure 2C) was analyzed
using FunRich v3 [74].

For further interpretation of the target WGCNA
module, enrichment of biological processes was performed
using DAVID: GOTERM_BP FAT. Proteins entered
into the WGCNA analysis were used as the background
dataset, and proteins within the target module were used
as the target list. All terms with a p-value (Benjamini
or Benjamini-Hochberg adjusted) less than 0.05 were
considered significant and ranked by the number of
proteins identified in the group.
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