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ABSTRACT

Packed with biological information, extracellular vesicles (EVs) offer exciting 
promise for biomarker discovery and applications in therapeutics and non-invasive 
diagnostics. Currently, our understanding of EV contents is confined by the limited cells 
from which vesicles have been characterized utilizing the same enrichment method. 
Using sixty cell lines from the National Cancer Institute (NCI-60), here we provide 
the largest proteomic profile of EVs in a single study, identifying 6,071 proteins with 
213 common to all isolates. Proteins included established EV markers, and vesicular 
trafficking proteins such as Rab GTPases and tetraspanins. Differentially-expressed 
proteins offer potential for cancer diagnosis and prognosis. Network analysis of vesicle 
quantity and proteomes identified EV components associated with vesicle secretion, 
including CD81, CD63, syntenin-1, VAMP3, Rab GTPases, and integrins. Integration of 
vesicle proteomes with whole-cell molecular profiles revealed similarities, suggesting 
EVs provide a reliable reflection of their progenitor cell content, and are therefore 
excellent indicators of disease.

INTRODUCTION

Extracellular vesicles (EVs) represent a diverse 
population of communication pods released from cells. 
Ranging in size from 40 to 1000 nm, EVs include 
exosomes, microvesicles, and apoptotic bodies. Generally, 
exosomes are described as 40-150 nm endocytically-
derived vesicles formed by intraluminal budding of 
multivesicular bodies (MVBs) which are released 
following MVB fusion with the plasma membrane. 
Microvesicles are generally larger than exosomes, and 
are shed by budding and fission events directly at the cell 
membrane. Varying in size, apoptotic bodies are formed 
by plasma membrane blebbing, and can contain packaged 
organelles following initiation of cell death. Further 
sub-populations of vesicles likely exist, reflecting the 
heterogeneity of cellular biology encapsulated by EVs.

Extracellular vesicles have been implicated in a 
number of different physiological processes, including 
immune system modulation, cell-to-cell signaling, and 
cell proliferation [1–5]. Accumulating evidence has 

implicated EVs as major players in the growth, invasion, 
and metastatic capacity of cancer cells [6, 7]. For example, 
exosomes and microvesicles have been demonstrated to 
transfer oncoproteins and nucleic acids from virally-
infected cells to uninfected neighboring cells, and likely 
promote viral-associated tumor progression [8–11]. 
Systemic circulation of EVs can play a role in establishing 
a tumor microenvironment, providing the “soil” for cancer 
cell “seeding” to metastatic sites [12] and cancer patients 
have been shown to have increased levels of circulating 
EVs [13–15]. Recent research has begun to characterize 
specific transmembrane proteins responsible for targeted 
vesicle uptake by cells in common cancer type-specific 
metastatic sites [16]. These circulating vesicles therefore 
reflect a diverse form of intercellular communication that 
can facilitate the progression of neoplastic growth and 
tumor metastasis.

Though EVs likely contribute to the progression 
of some types of cancer, our knowledge of vesicular 
communication is still incomplete. One reason is due 
to the heterogeneity of EV sub-populations. Though 
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the complexity of EV populations has burdened our 
understanding of their roles in cell biology, the existence 
of a variety of EVs may be beneficial in the context of 
cancer diagnostics and prognostics. One challenge in 
diagnosing cancer is that tumors often represent a diversity 
of cell types and genetic mutations; a tissue biopsy is 
limited in its ability to reflect this diversity. However, 
circulating EVs are derived from an all-inclusive 
population of cells, and therefore have the potential to 
more accurately reflect the entirety of a heterogeneous 
tumor [17]. While some limitations of vesicle-based 
biopsies exist, such as disparities in EV quantities released 
from different tumor cells and the ability to detect small 
changes in the populations of circulating vesicles, EV-
based detection offers alternatives to current diagnostic 
approaches. Current screening or monitoring tests of 
cancer progression, such as prostate-specific antigen 
(PSA; prostate), CA-125 (ovarian), alpha fetoprotein 
(liver), or CA19-9 (pancreatic) often lack the sensitivity 
or specificity to provide highly accurate clinical diagnoses 
[18–20]. As EVs provide membrane-bound protected 
cargo that can reflect cell-specific pathological processes, 
we and others propose that these vesicles bear great 
potential as circulating biomarkers that could improve the 
current strategies of cancer diagnosis [21–24].

A better understanding of the contents of these 
vesicles is crucial to the development of EV clinical 
applications. A current limitation in proteomic analyses of 
EVs from cancer cells is the narrow number of cell lines 
studied using comparable and reproducible methods. Here, 
we characterize 60 diverse human cancer cells derived 
from 9 distinct tissue types from the National Cancer 
Institute (NCI-60). The NCI-60 panel was originally 
compiled by the Developmental Therapeutics Program for 
high-throughput drug screening, and has led to a number 
of successful chemotherapeutic drugs used to treat cancer 
patients [25]. The NCI-60 has also contributed vastly 
to a better understanding of cancer cell biology and the 
identification of many novel oncogenic DNA mutations 
[26, 27]. Since then, the panel has become publicized for 
cancer research purposes, and a full whole-cell proteomic 
analysis of each individual cell line has been published 
[28]. Proteomic and RNA analyses of EVs from subsets 
of the NCI-60 panel have recently been investigated, 
providing initial characterizations of cancer vesicle 
contents [29–32]. Research using cell lines from the NCI-
60 panel has also contributed to evidence demonstrating 
the roles of EVs in the growth and survival of tumor 
cells, multidrug resistance [33–35], immune evasion [36], 
cancer cell migration [37] and impact on cells in the tumor 
microenvironment [38]. Subsets of the panel have also 
been used to study general mechanisms of EV biogenesis 
and release from cells [39, 40]. Recently, we compared the 
vesicle secretion of NCI-60 cell lines using nanoparticle 
tracking analysis (NTA). Results highlighted differences in 
secretion rates and sizes of vesicles from cancer cells [41].

With this in mind, we conducted a comparative 
analysis of proteins from EVs secreted by the NCI-
60 cells. To our knowledge, this is the largest single-
study proteomic investigation of vesicles to date. In this 
study, 6,071 unique proteins were identified, including 
213 common to all 60 cell types, which likely reflect 
the common machinery involved in EV biogenesis. 
Differentially expressed proteins were also identified. 
Many of these proteins are associated with tissue type, 
and could therefore serve as markers of EV origin or aid 
as future diagnostic biomarkers of cancers. To investigate 
proteins involved in mechanisms of EV biogenesis and 
secretion, the EV proteome was further analyzed to 
look for associations between protein accumulation 
(spectral counts) and vesicle secretion quantity. Finally, 
the proteomic analysis of NCI-60 EVs was compared to 
existing cellular proteome and transcriptome datasets. 
These analyses revealed that the EV proteome closely 
reflects the transcriptome and proteome of the cell of 
origin, supporting the hypothesis that EVs are a rich 
source of diagnostic and prognostic markers. Overall, 
this extensive proteomic dataset provides a foundation 
to further investigate general mechanisms of vesicle 
biogenesis, and demonstrates the incredible biomedical 
and clinical utilities of extracellular vesicles.

RESULTS AND DISCUSSION

Cancer-cell derived EVs contain core vesicle 
machinery

To characterize and compare extracellular vesicle 
proteomes, EVs were harvested from 60 cell lines (NCI-
60). As pure EV sub-populations are empirically difficult 
to isolate, a method of enriching a broad spectrum of 
vesicles was used in this study to contribute to a greater 
understanding of global EV content. We have previously 
demonstrated that the ExtraPEG method enriches for EVs 
with a comparable purity [42] to sucrose-purified samples 
following growth of cells for a period of time in serum-
free medium, as performed in this study [43] (Figure 
1A). Vesicles harvested using this method were found 
to contain extracellular vesicle markers by western blot 
[41, 43]. Nanoparticle tracking and electron microscopy 
revealed sizes and morphology consistent with those 
previously reported for EVs [41, 43]. Here, vesicles were 
enriched using identical methods from individual cell lines 
across nine represented histological origins: breast, brain 
(CNS), colon, kidney, leukemia, lung, melanoma, ovary, 
and prostate. Collectively, 6,071 unique proteins were 
identified in EVs (Supplementary Table S1). To examine 
the overlap between known vesicular proteins, NCI-60 
EV proteins were compared to those in the Vesiclepedia 
compendium of extracellular vesicle molecular data [44]. 
Nearly 4,500 proteins were previously identified in EVs 
(Figure 1B and Supplementary Table S2). Over 1,500 
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proteins not previously characterized as EV components 
were further discovered. Because so many unreported 
vesicular proteins were identified, we aimed to ensure that 
proteins found in this study were congruent with those 
previously found in EVs. To increase the stringency of our 
dataset and characterize common EV proteins, only those 
identified in at least two-thirds all cell line isolates ([NCI-
60]stringent) were compared to the Vesiclepedia compendium. 
These proteins showed over 97% overlap with proteins 
currently characterized as extracellular vesicle proteins.

The entire proteome of NCI-60-derived EVs was 
further characterized systematically using qualitative 
and quantitative analyses. An average of nearly 1,900 
proteins were identified per cell line across all tissue 
types (Figure 1C). Calculation of the median logarithmic 
abundance of proteins revealed a normal distribution of 
spectral counts across the panel (Supplementary Figure 
1D). The number of total EV proteins found within each 
tissue was similar across the panel (Figure 1D), with the 

exception of the prostate cancer group, likely explained 
by the underrepresentation of this tissue type (n=2). 
Strikingly, 213 proteins were identified that were common 
to every vesicle sample, representing the core NCI-60 EV 
proteome (Supplementary Table S3). These proteins likely 
reflect essential proteins packaged into EVs from many 
different cellular origins, and provide insight into general 
mechanisms of EV biogenesis, entry, protein trafficking, 
and secretion. Proteins found in at least one cell line from 
each exclusive tissue type were also compiled to represent 
tissue-specific markers (Supplementary Table S4). 
Notably, 165 proteins were exclusively found in leukemia-
derived EVs, while fewer unique proteins were in other 
tissue types. As EVs from many cancer cells have been 
shown to be enriched in functional integrins [16, 45], these 
data may reflect detectable differences between cancer 
EVs originating from circulating hematopoietic cells 
versus those typically attached to basement membrane 
matrices through integrin linkers.

Figure 1: Proteomic analysis of extracellular vesicles secreted by the NCI-60 cells. A. Centrifugation protocol and 
general workflow of EV enrichment for LC-MS/MS analysis. B. Venn diagram of proteins identified in EV samples in the NCI-60 and 
NCI-60]stringent datasets compared to the Vesiclepedia database of proteins. See also Supplementary Table S2. C. Average spectral counts per 
cell line across tissue types. Parentheses indicate the number of cell lines represented in each tissue type. Data are represented as mean ± 
STD. D. Total proteins including common proteome (dotted line) and tissue-specific proteins identified across the nine histological origins 
represented. See also Supplementary Table S3 and S4.
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Enrichment analysis highlights the subcellular 
localization and function of cancer cell 
extracellular vesicle proteins

To characterize the cargo abundant in the majority 
of cancer EVs, proteins found in the [NCI-60]stringent dataset 
were further analyzed. Functional and pathway analyses 
were conducted using the Database for Annotation, 
Visualization, and Integrated Discovery (DAVID) v6.7. 
Not surprisingly, proteins enriched in protein localization, 
transport, and vesicular functions were identified in our 
data set (Figure 2A). Many ribosomal proteins involved in 
translation processes were also enriched, similar to results 
seen in previous studies [32, 46]. Ribosomal components 
may facilitate cell-to-cell communication by directly 
translating mRNAs present in EVs following fusion with 
target cells. Pathway analysis revealed proteins to be 
enriched in RNA processing and proteolytic processes, 
as well as cytoskeletal and endocytic, pathways (Figure 
2B). Comparison to the Vesiclepedia database revealed the 
majority of proteins to have a subcellular localization in 
endolysosomal or cytoplasmic compartments (Figure 2C). 

Altogether, these analyses demonstrate an abundance of 
proteins with recognized functions in protein and vesicle 
trafficking from the endosomal pathway, and cytoskeletal 
involvement that likely plays a role in both exosome 
and microvesicle secretion. The presence of proteins 
involved in RNA processing suggests an active process of 
RNA sorting and packaging, and offers insight into how 
biologically active RNA messages are communicated 
between cells.

A common method of characterizing EVs 
relies on the presence of accepted protein markers 
enriched in vesicle populations. Recent research has 
described different subpopulations of EVs from cells 
by identifying vesicle specific protein markers [47]. We 
compared commonly used exosome and microvesicle 
markers described across EVs derived from the NCI-
60 cells (Figure 2D). Historically, these markers have 
been considered universal, however, only tetraspanin 
CD81, Alix, and HSC70 were found across all samples. 
Tetraspanins CD63 and CD9, as well as TSG101, 
Syntenin-1, and Flotillin-1 were identified in at least 
two-thirds of the samples. MMP-2, a previously 

Figure 2: Enrichment analysis of EV proteins identified. Proteins identified in the [NCI-60]stringent dataset were used for enrichment 
analyses. A. Functional and B. pathway enrichment analysis of EV proteins using the DAVID database (GOTERM_BP_FAT and KEGG_
PATHWAY). All terms were significant (p < 0.05) following Benjamini correction. C. Subcellular localization enrichment using FunRich. 
All terms were significant (p < 0.001) following Benjamini correction. D. Spectral counts of common vesicle protein markers measured 
across all NCI-60 EV samples.
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reported microvesicle marker [32] was found in only 
16 EV samples across the panel. Many of these protein 
markers have historically been used to describe and 
quantify extracellular vesicles regardless of their cellular 
localization or method of harvest. However, data presented 
here show wide variation in the levels of traditional EV 
markers, with some being completely undetectable in 
certain EV preparations. We subsequently analyzed EV 
proteins identified in this study to characterize those 
common to all cells in the NCI-60 panel. Proteins within 
this dataset involved in vesicle-mediated transport and 
protein localization were identified, and were largely 
enriched in GTPase function, including Rab proteins 1A, 
2A, 5C, 6A, 7A, 8A, 10, 11B, and 14 (Supplementary 
Table S5). These proteins likely represent more universal 
markers of EVs that future EV researchers should consider 
for characterization. Notably, as various cells may package 
these proteins to different degrees within the same number 
of EVs, the correlation of vesicle quantity across cell 
lines to any one of these markers is complex. This poses 
challenges for researchers, as quantitative protein assays 
such as ELISA or immunoblot analyses are often used to 
determine vesicle quantity following EV enrichment.

EV proteomes cluster by tissue type and contain 
proteins unique to cancer type

Next we aimed to compare vesicle proteomes 
across individual cancer cells in the NCI-60 panel. As 
extracellular vesicles have been suggested to carry proteins 
that reflect their progenitor cell, it was hypothesized that 
EVs released from cells of the same tissue type would 
share similarities in protein content. Principal component 
analysis (PCA) demonstrated that EV proteins clustered 
based on tissue type (Figure 3A). Of note, one leukemia 
cell line (K562) did not cluster with the remaining cancer 
EVs (Supplementary Figure 1C). The K562 cell line is an 
erythroleukemia derived from the pleural effusion of a 
patient with chronic myelogenous leukemia (CML), and is 
positive for the Philadelphia translocation on chromosome 
22, creating the chimeric BCR/ABL fusion gene. The 
BCR/ABL gene has been demonstrated to downregulate 
many cell adhesion molecules [48], which may, in part, 
explain the divergence from other cell-derived EVs. For 
instance, in this study, ICAM3, an adhesion molecule 
abundantly expressed in leukocytes, was found in high 
levels among all leukemia-derived EVs except the K562 
EVs. In light of these findings, the K562 cell line was 
excluded from all subsequent analyses.

Unsupervised hierarchal clustering was used to 
further examine the congruity of EV proteomes from cells 
of the same tissue origin. Samples from colon, kidney, 
leukemia, lung, and melanoma cancers clustered closely 
within tissue type (Figure 3B). Breast, CNS, and ovarian 
cancer EVs demonstrated sub-clustering within each 

tissue type, suggesting similarities between cancer types 
that may not be universal across the tissue of origin. Part 
of these unique clustering patterns may reflect metastatic 
potential of particular cell lines. For example, highly 
metastatic breast cancer cells (BT-549 and MDA-MB-231) 
cluster together away from other non-metastatic breast cell 
lines.

Strikingly, a number of proteins were observed 
to be differentially expressed in vesicles secreted from 
adherent cell lines compared to cells in suspension culture. 
For example, Agrin (AGRN), a basement membrane 
glycoprotein that contains heparan and chondroitin 
sulfate residues was absent only in the leukemia-derived 
EVs (Figure 3C). On the other hand, adhesion molecule 
ICAM3 was present predominately in EVs secreted from 
leukemia cancer lines grown in suspension (Figure 3D). 
As integrin and heparan sulfate proteoglycan receptors 
have been demonstrated to play a significant role in the 
uptake of vesicles into cells [16, 49], these observations 
provide new targets for future studies of tissue-specific 
mechanisms of vesicular protein trafficking and targeting 
of EVs to recipient cells.

Recently, a urine-based exosome diagnostic assay 
has been demonstrated to predict high-grade prostate 
cancer among men with elevated PSA levels [50]. 
Likewise, glypican-1, a heparan sulfate proteoglycan, was 
found to be detected in only cancer-derived exosomes, 
and was further shown to be correlated with pancreatic 
cancer progression in patients, providing a non-invasive 
early diagnostic tool for pancreatic cancer [23]. In the 
NCI-60 panel, glypican-1 was identified in only 35 of 
60 cancer EV isolates. This suggests an even stronger 
likelihood of novel protein markers identified across 
all samples in this study (or all samples within a tissue-
type) to be useful as early diagnostic markers of cancers. 
Furthermore, the evidence showing differences in EV 
contents from circulating cells (leukocytes) compared to 
basement membrane-adhered cells is particularly valuable 
when considering liquid biopsy techniques to isolate 
vesicles, as proteins such as ICAM3 could serve as a tool 
to distinguish blood cell-borne EVs from those secreted 
into circulation by organ-derived or metastatic cells.

Extracellular vesicle-based liquid biopsies also 
carry the potential for early detection of cancer cells 
that normally have limited access to blood circulation. 
The proteomic analysis of NCI-60 EVs confirmed the 
presence of premelanosome protein (PMEL) in vesicles 
secreted from all melanoma cancer cell types (Figure 3E). 
This melanocyte-specific transmembrane glycoprotein has 
previously been shown to be sorted into endosomes for 
exosomal secretion [51]. As melanocytes are ordinarily 
confined to the epidermal layers of the skin, access to 
deeper blood vessels is not usually achieved unless 
vertical growth of cancerous cells occurs. Therefore, a 
circulating (plasma) melanocyte-specific exosomal protein 
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marker could serve as an early indication of various types 
of invasive melanoma growth.

Moreover, several vesicular proteins were identified 
in a very small population of cancer lines. For instance, 
Tenascin XB (TNXB), an extracellular matrix glycoprotein 
was found in abundant levels only in PC-3 cells, a high 

grade prostate adenocarcinoma line. Although Tenascin 
XB was not identified in whole cell proteomic profiling 
from PC-3 cells [28], relatively high transcript levels of 
this protein in PC-3 cells have been described previously 
[52]. Another EV protein, periostin was recently identified 
as a metastatic breast cancer vesicular marker [22]. In our 

Figure 3: Differential expression of proteins found in NCI-60 cell-derived extracellular vesicles. A. PCA plot based on 
variant vesicle proteins across tissue types. B. Unsupervised hierarchal clustering of cell lines based on EV proteomic profiles. Spectral 
count-based differential expression of C. Agrin, D. Intercellular adhesion molecule (ICAM) 3, E. Premelanosome protein (PMEL), and F. 
Tenascin-XB. See also Supplementary Figure 1 and Supplementary Table S6.
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study, the presence of periostin was confirmed in both 
metastatic breast cancer lines (MDA-MB-231 and HS 
578T), but was not found in other non-metastatic breast 
cancer-derived EVs. Additional proteins including raftilin 
(a lipid-raft regulating protein), fibulin-7 (an adhesion 
molecule), and plasminogen activator inhibitor 1 (a serine 
protease inhibitor that has previously been implicated in 
aggressive tumor growth [53, 54]) were exclusively found 
in metastatic breast cancer EVs. Likewise, latent-TGFβ-
binding protein-1 was identified preferentially in lung 
cancer cells with high invasive capacity (A549, HOP-62, 
and HOP-92) [55]. In all, over 1,500 proteins were found 
to be differentially expressed across the 60 EV samples 
(Supplementary Table S6). Interestingly, comparison of 
whole cell protein expression reported by Gholami et al. 
to EV expression in Figure 3C-3E [28] revealed these 
differentially expressed proteins to be largely conserved 
between cell and vesicle isolates. For instance, ICAM3 
was chiefly absent in non-leukemic tumor cells, while 
Agrin was underrepresented in leukemia-derived cells 
(Supplementary Figure S2). Likewise, PMEL was found 
in substantial levels in melanoma cell lines compared 
to other cancer cells. These findings suggest that 
differentially expressed proteins found in cancer EVs may 
reflect cellular phenotypes. Furthermore, the specificity 
of protein content in vesicles from individual cancer cell 
types promises great potential in further investigation 
of these novel markers for early cancer detection and 
prognostic monitoring.

Conserved vesicular proteins are correlated with 
EV secretion

Recently, we described relative extracellular vesicle 
secretion quantities across the NCI-60 panel [41]. As many 
EV proteins in samples across the study were identified in 
different quantities, we hypothesized that some of these 
proteins are likely involved in vesicle biogenesis and 
therefore correlate to the total number of vesicles secreted 
by cells. To investigate proteins involved in common 
pathways of EV formation, levels of proteins in the [NCI-
60]stringent were compared to previously collected vesicle 
secretion quantities [41] (particles per cell; Supplementary 
Table S7) by weighted gene coexpression network analysis 
(WGCNA).

In this analysis, hierarchal clustering of proteins 
(Figure 4A) demonstrated inter-related expression patterns 
and produced 15 clusters of highly related proteins 
(modules) that were detected by dynamic tree cut, an 
optimal method used to detect clusters of data within a 
dendrogram [56]. Modules were then correlated to vesicle 
secretion patterns across the panel (Supplementary Table 
S8). The yellow module containing 88 proteins was 
most significantly correlated with particle secretion, and 
therefore served as our target protein cluster (Figure 4B).

Here, protein significance is defined as the 
correlation of the protein expression profile across the 
NCI-60 panel with particle secretion levels. Module 
membership further measures the correlation of 
protein expression patterns across the members of the 
yellow module. We found protein significance and 
module membership to be positively correlated in the 
yellow module (p = 0.006) (Figure 4C). These findings 
suggest that proteins clustered into the module show 
interconnected profiles of expression in vesicles that 
positively correlated with the number of vesicles secreted 
by cells.

Enrichment analysis of the yellow module 
demonstrated proteins were significantly enriched in cell 
adhesion and growth, GTPase activity, and cell surface 
receptor signaling (Figure 4D), and included CD63, CD81, 
VAMP3, syntenin-1, and SEC22B, among other vesicular 
proteins. Strikingly, 25 of the yellow module proteins were 
identified in EVs from every cancer cell in the panel (Table 
1), supporting the hypothesis that commonly identified 
EV components likely play a role in EV biogenesis. In 
light of the variation in current EV markers seen (Figure 
2D), these represent important proteins that could more 
accurately compare vesicle quantities across a diversity of 
cell lines and certainly warrant future investigation.

Cancer vesicle proteomes reflect the molecular 
composition of progenitor cells

Given the clinical utility of using extracellular 
vesicles for cancer diagnostics, we investigated the 
relationships between EV protein composition and 
whole cell content. Previously, cellular protein and 
transcript expression profiles were compared using 
co-inertia analysis (CIA) to examine the concordance 
between these molecular datasets across the NCI-60 
panel [28]. Here vesicle protein levels were similarly 
compared to cellular protein and RNA expression. In 
Figure 5A, each of the three datasets (vesicle proteome, 
cellular proteome, and cellular transcriptome) is 
plotted for individual cell lines. Markers represent the 
relative position of a cell line in respective proteome or 
transcriptome space, where the divergence of datasets 
is delineated by connecting vectors. Molecular factors 
driving tissue-dependent clustering were plotted as 
overlapping protein (cell and vesicle) and RNA transcript 
data in the same orientation (Figure 5B). In variable 
space, RNA or protein coordinates farther from the origin 
are more highly expressed in cell lines projected in the 
same direction. Whole cell RNA profiling showed the 
strongest ability to differentiate samples, demonstrated 
by farther distances of RNAs from the origin in variable 
space. However, vesicle protein was observed to show 
similar magnitudes of projection from the origin as whole 
cell protein, demonstrating the ability of EV proteins to 
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reflect cell protein profiling. A histogram of eigenvalues 
(Figure 5C) demonstrated that the first and second co-
inertia axes represented 49% of the total variance (sum of 
the eigenvalues) seen in the datasets plotted, accounting 
for 31% and 18% of the variance respectively. The three 
datasets were also examined to consider how much 
variance of the eigenvalues was contributed by each 
dataset (Figure 5D). No single dataset contributed to 
both co-inertia axes alone, indicating that the analysis 
examining the relationships between vesicle proteomes 

and cellular transcriptomic and proteomic profiles was 
dependent on all datasets.

In general, melanoma, leukemia and colon cells 
demonstrated tissue-type clustering based on their 
unique proteomic and transcriptomic profiles, similar to 
clusters previously observed (Figure 3A-3B). The vesicle 
protein dataset showed considerable association with 
the whole cell molecular profiles, indicated by the short 
and randomly oriented arrows (Figure 5A). Overall, the 
similarity of vesicle protein to cellular RNA and protein 

Figure 4: Network analysis of protein content with vesicle secretion. A. Network heatmap plot of topological overlap depicting 
protein dendrogram and module assignment. Targeted yellow module is highlighted. See also Supplementary Figure 3. B. Heatmap of 
module-trait correlation containing correlation and relevant p-values of modules detected. See also Supplementary Table S7 and S8. C. 
Scatter plot of membership in the yellow module and protein significance corresponding to vesicle secretion quantities across the NCI-60. A 
significant positive correlation between protein significance and module membership was determined (p = 0.006). D. GOTERM_BP_FAT 
analysis of biological processes enriched in the yellow module protein dataset.
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resulted in RV coefficients of 0.63 and 0.57, respectively. 
Notably, several cell lines demonstrated greater variation 
between vesicle protein and whole cell profiles, including 
two lung lines (NCI-H322M and HOP-62), one colon cell 
(HCC-2998), and an ovarian cell (IGROV1). To more 
closely examine proteins found in discordance between 
whole cell and EV proteomes, proteins found in the core 
vesicle proteome were compared to reported cellular 
expression data [28]. In total, 144 proteins identified in 
the core vesicle proteome in this study were similarly 
identified in cell lines, as reported by Gholami et al. 
Comparison of expression levels between whole cell 
and vesicular isolates revealed several outlying proteins 

enriched in vesicles or cells alone (Figure 5E–5H and 
Supplementary Table S9). While proteins such as Actin 
(ACTG1) or Glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH) were found abundantly in both cells and EVs, 
tubulin proteins (TUBB4B and TUBA1C) were enriched 
in lung cancer vesicles compared to cells, and actin-
binding protein Moesin (MSN) was enriched in vesicles 
from IGROV1 and HCC-2998 cells. Strikingly, Galectin-
3-binding protein (LGALS3BP) was enriched in multiple 
EV isolates compared to respective progenitor cells. These 
proteins probably represent targets of selective vesicular 
packaging, and future focus will likely advance our 
understanding of vesicular trafficking mechanisms.

Table 1: Common cancer proteins associated with vesicle secretion

Protein ID Gene symbol Protein name Average spectral count per 
sample

P07355 ANXA2 Annexin A2 288.53

P18085 ARF4 ADP-ribosylation factor 4 18.05

P35613 BSG Basigin 79.12

P13987 CD59 CD59 glycoprotein 34.40

P60033 CD81 CD81 antigen 83.18

P05534 HLA-A HLA class I histocompatibility antigen, A-24 alpha 
chain 92.82

P01112 HRAS GTPase HRas 40.58

P0DMV9 HSPA1B Heat shock 70 kDa protein 1B 142.08

P04792 HSPB1 Heat shock protein beta-1 74.40

P05556 ITGB1 Integrin beta-1 168.10

Q08380 LGALS3BP Galectin-3-binding protein 550.05

P08590 MYL3 Myosin light chain 3 10.32

P60660 MYL6 Myosin light polypeptide 6 72.50

P22392 NME2 Nucleoside diphosphate kinase B 75.72

P01111 NRAS GTPase NRas 7.08

P51148 RAB5C Ras-related protein Rab-5C 51.18

P51149 RAB7A Ras-related protein Rab-7a 64.45

P63000 RAC1 Ras-related C3 botulinum toxin substrate 1 43.45

P11234 RALB Ras-related protein Ral-B 38.67

P61224 RAP1B Ras-related protein Rap-1b 111.35

P61586 RHOA Transforming protein RhoA 81.78

O75396 SEC22B Vesicle-trafficking protein SEC22b 21.85

P37802 TAGLN2 Transgelin-2 87.45

P61077 UBE2D3 Ubiquitin-conjugating enzyme E2 D3 7.58

Q15836 VAMP3 Vesicle-associated membrane protein 3 28.08
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Figure 5: Comparison of vesicular proteome with cellular proteome and transcriptome. A. Co-inertia analysis of cellular 
proteome and transcriptome with vesicular proteome across the NCI-60 panel. Vectors represent the proportional divergence between 
data sets within each cell line. B. Coordinates of the proteins or RNA from each data set plotted in the same orientation as the co-inertia 
analysis. C. Histogram of eigenvalues. Blue bars represent the absolute values of eigenvalues retained in the analysis. Black dots represent 
the proportion of variance found within each eigenvector. D. Plot of pseudo-eigenvalues space, indicating the variance of eigenvalues 
contributed by each of the three datasets. Comparison of expression levels of core vesicular proteins with whole cell protein expression 
from representative cells lines: E. HCC-2993 (colon); F. NCI-H322M (lung); G. IGROV1 (ovary); and H. HOP-62 (lung). See also 
Supplementary Table S9.
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Altogether, the congruency of tissue dependent 
clusters across datasets and resemblance between the 
vesicle and cellular molecular profiles substantiates the 
ability of EV profiles to discriminate between tissue 
types and supports a significant clinical value of EVs as 
circulating biomarkers. As EVs can closely reflect the 
molecular profile of their cellular origin, they therefore 
represent circulating biological archetypes of healthy or 
diseased cells.

CONCLUSIONS

In the past decade, it has become clear that 
extracellular vesicles are an important component of 
cellular communication informing fields including 
cancer biology, immunology, and virology. The data 
here provide a means to better understand the protein 
cargo involved in this ubiquitous messaging system with 
implications for further use in clinical diagnostic practice. 
In the characterization of vesicular protein contents from 
the NCI-60 cells, we have expanded the list of known 
vesicle proteins by nearly twenty percent (based on the 
Vesiclepedia database of characterized vesicle proteins), 
significantly growing our foundation of knowledge of the 
nature of this communication system. Of these proteins 
identified, 213 were common to all cell lines. This core 
EV proteome likely represents conserved structural and 
signaling components of vesicles, and molecular factors 
involved in vesicle biogenesis and secretion. In support 
of this, 25 of the 213 proteins were found to be positively 
correlated with EV secretion levels. One of the largest 
obstacles currently faced by EV researchers is accurately 
defining these vesicles subtypes. The data presented in 
this study offer a substantial step forward in the ability 
to define EV populations, and to enrich vesicles for 
studies in all areas of EV research. As our ability to 
isolate distinct vesicle sub-populations continues to 
improve, this substantial database will likely provide 
an important backbone for understanding more unique 
vesicle contents.

In this study, critical differences in extracellular 
vesicle contents were also identified which may directly 
lead to the discovery of biomarkers of cancer, ultimately 
affecting diagnosis and prognosis of the increasingly 
prevalent disease. As emerging large-scale “omic” 
datasets progressively demonstrate significant potential 
in the future of individualized medicine, it is expected 
that extracellular vesicles will play an important role 
in modern health and disease-state surveillance. In this 
study, the close resemblance of vesicle and cellular 
molecular profiles suggests that extracellular vesicles 
reliably represent their progenitor cells. They are therefore 
excellent candidates for bearing biomarkers, and will 
increasingly find a place amongst clinical strategies for 
combating diseases like cancer.

EXPERIMENTAL METHODS

Cell culture

Sixty cell lines from the National Cancer Institute 
(NCI-60) were acquired from the NCI Developmental 
Therapeutics Program. Cells were seeded based on growth 
rate (doubling time) to achieve 80-90% confluence after 
two to three days. Cells were cultured in RPMI-1640 
medium (Lonza, 12-702Q) supplemented with 10% 
fetal bovine serum (FBS; Seradigm, 1400-500), 2 mM 
L-glutamine (Corning, 25-005-CI), 100 units penicillin/
streptomycin (Corning, 30-002-CI), and 100 units:100 
μg/mL:0.25 μg/mL antibiotic/antimycotic (Corning, 
30-002-CI). Following the two to three day culture, 
complete medium was aspirated and cells were washed 
with warmed sterile phosphate buffered saline (PBS). To 
minimize contaminating serum proteins in downstream 
mass spectrometry analysis and aid in the identification 
of lower abundance EV proteins, cells were cultured in 
serum-free medium for a further 48 hours before EV 
enrichment. Previous results have demonstrated that EVs 
harvested using this method are as pure as sucrose-cushion 
purified vesicles [43].

EV enrichment and protein quantification

Following the 48 hour serum-free culture, medium 
was harvested. Cell viability at the time of harvest was 
measured by counting cells stained with 0.2% trypan 
blue in PBS (Sigma, T8154) or AO/PI (Nexcelom 
Bioscience, CS2-0106) with an automated cell counter 
(Cellometer Vision, v2.1.4.2, Nexcelom Bioscience). 
We have previously demonstrated that cell viability 
does not significantly contribute to the number or size 
of particles secreted by the NCI-60 cells when viabilities 
are maintained greater than 85% [41]. In this study, 
cell viabilities following the forty-eight hour serum-
free culture approximated those observed previously 
in complete medium. EVs were enriched using the 
ExtraPEG method previously described [43]. Briefly, cell-
conditioned medium was centrifuged at 500 g for five 
minutes to pellet and discard cells, followed by 2,000 g 
for 30 minutes to remove cellular debris. Supernatant was 
pooled from several flasks to amass sufficient material 
(200-500 mL) for downstream proteomic analysis. A 1:1 
volume of 2X PEG solution [16% (w/v) polyethylene 
glycol, 1 M NaCl] was added. Samples were inverted 
to mix, then incubated overnight. The next day, the 
medium/PEG mixture was centrifuged at 3,214 g for one 
hour. Crude vesicle pellets were resuspended in 1 mL of 
particle-free PBS and re-pelleted by ultracentrifugation 
at 100,000 g for 70 minutes. Final pellets were lysed in 
strong lysis buffer [5% SDS, 10 mM EDTA, 120 mM Tris-
HCl pH 6.8, 2.5% β-mercaptoethanol, 8 M urea] with the 
addition of HALT protease inhibitor (Thermo, 78438). 
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Vesicular protein was quantified using the fluorescence-
based EZQ™ Kit (Thermo, R33200).

SDS PAGE and in-gel digestion

For protein purification and separation by sodium 
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE), 20 μg of vesicular protein from each sample 
was loaded into a 4-20% polyacrylamide gel (Lonza, 
59511). Following electrophoresis, gels were fixed and 
Coomassie-stained as previously detailed [57]. Samples 
were fractionated by cutting gel lanes into five sections. 
Sections were subsequently subdivided into 1 mm3 cubes 
before trypsin-digesting as described [43].

Protein identification and quantification

Following protein digestion, samples were 
submitted to the Florida State University Translational 
Science Laboratory for liquid chromatography tandem 
mass spectrometry (LC-MS/MS) analysis. The digest 
was freeze-dried and resuspended in 30 μL 0.1% FA 
and analyzed by liquid chromatography tandem mass 
spectrometry (LC-MS). An externally calibrated Thermo 
LTQ Orbitrap Velos nLC-ESI-LTQ-Orbitrap (high-
resolution electrospray tandem mass spectrometer) was 
used with the following parameters: A 2 cm trap column of 
100 μm internal diameter (i.d.) (SC001 Easy Column from 
Thermo-scientific) was followed by a 10 cm analytical 
column of 75 μm i.d. (SC200 Easy Column from Thermo-
scientific). Both trap column and analytical column had 
C18-AQ packaging. Separation was carried out using 
Easy nanoLC II (Thermo-Scientific) with a continuous, 
vented column configuration. A 5 μL sample was aspirated 
into a 20 μL sample loop and loaded onto the trap. The 
flow rate was set to 300 nL/min for separation on the 
analytical column. Mobile phase A was composed of 99.9 
H2O (EMD Omni Solvent), and 0.1% formic acid, and 
mobile phase B was composed of 99.9% ACN and 0.1% 
formic acid. A 1 hour linear gradient from 0% to 45% B 
was performed. The LC eluent was directly nano-sprayed 
into an LTQ Orbitrap Velos mass spectrometer (Thermo 
Scientific). During the chromatographic separation, the 
LTQ Orbitrap Velos was operated in a data-dependent 
mode and under direct control of the Xcalibur software 
(Thermo Scientific). The mass spectrometry data were 
acquired using the following parameters: 10 data-
dependent collisional-induced-dissociation (CID) MS/MS 
scans per full scan. All measurements were performed at 
room temperature and three technical replicates were run 
for each sample.

Raw data collected from each of five fractions 
were pooled by sample and analyzed using MaxQuant 
(v1.5.3.30). The mass spectrometry data were analyzed 
using the integrated Andromeda peptide search engine 
and a recent (March 2016) UniProt knowledgebase 

reviewed (Swiss-prot) human protein database. 
The database was appended with a list of common 
contaminants in MaxQuant, and search parameters 
used were either the default settings for this version of 
the software, or as follows. Instrument type was set to 
Orbitrap, using label free quantitation, and first search 
peptide tolerance set to 10 ppm, and main search peptide 
tolerance at 4.5 ppm. Digestion mode was set specific 
for trypsin, with a maximum of two missed cleavages. 
Fixed modifications included only carbamidomethyl 
(C), and variable modifications included oxidation (M), 
N-terminal acetylation, and phosphorylation (STY). 
A maximum of five modifications were allowed per 
peptide. False discovery rate was set to 0.01. The mass 
spectrometry proteomics data have been deposited to the 
ProteomeXchange Consortium [58] via the PRIDE partner 
repository.

Primary analyses were conducted with the 
MaxQuant output data set (NCI-60). This dataset 
represents all proteins identified in the study. To examine 
proteins found in the majority of samples that reflect a 
more commonly shared cancer EV proteome, a more 
stringent protein set was used, and defined as [NCI-
60]stringent. This data set includes only proteins found in at 
least two thirds of all EV samples.

Differential expression as a function of 
tissue origin

For differential expression and network analyses, 
raw spectral count data were exported from the MaxQuant 
software and imported into R statistical framework. The 
spectral count based method has been demonstrated to 
provide a reliable representation of protein abundance with 
a linear dynamic range over several orders of magnitude 
with similar sensitivity as ion peak intensity quantitation 
[59–61]. Utilization of spectral counts was necessary for 
our downstream pipeline analyses using DeSeq2 for the 
identification of differentially expressed proteins and 
normalization for WGCNA and co-inertia analyses. Raw 
peak intensity data are reported in Supplementary Table 1.

DESeq2 is a package originally designed for 
analyzing read counts from RNA-sequencing datasets 
and recently used to analyze other forms of biological 
count data, including LC-MS/MS spectral count data 
[62]. Normalization of spectral counts with DESeq2 
considerably reduced the difference in sample depth 
between samples (Supplementary Figure 1A and 1B). 
PCA analysis of the top 500 variant proteins revealed one 
sample with substantially different protein expression 
profiles (K562) (Supplementary Figure 1C), which was 
removed from further analysis. After normalization, a 
likelihood ratio test was performed across all samples in 
DESeq2 to identify proteins with significantly different 
patterns of expression between samples of different tissue 
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origin. Proteins that returned an FDR-adjusted p-value (q 
value) of less than 0.05 were considered significant.

Weighted gene coexpression network analysis 
(WGCNA)

The WCGNA was originally implemented for 
the analysis of transcriptomic microarray data, but has 
recently been used to analyze RNA-seq and LC-MS/MS 
proteomics datasets [63, 64]. To identify proteins that 
are associated with the regulation of vesicle secretion, 
a network analysis was performed with the WGCNA 
package in the R statistical framework [65]. Tutorials for 
WGCNA can be found at http://labs.genetics.ucla.edu/
horvath/CoexpressionNetwork/. WGCNA is a multi-step 
analysis which involves: 1) generating a coexpression 
matrix for gene (or protein) expression, 2) transforming 
protein correlations into a adjacency matrix for network 
construction, 3) grouping together proteins (modules) 
that show high co-correlation, and 4) correlating an 
eigenprotein, the first principle component of each 
module, with a biological trait of interest. Importantly, 
WGCNA avoids the extensive FDR-correction needed 
to control for false positives in protein-wise differential 
expression analyses, as there are many fewer modules in 
the entire network than proteins.

Normalized [NCI-60]stringent count data were 
transformed in DESeq2 with a variance stabilizing 
transformation using the “VST” function, and used as input 
for WGCNA. The resulting count matrix was used as input 
for WGCNA. We used the one-step network construction 
and module detection function “blockwiseModules.” 
Modules of co-regulated proteins across the vesicle 
protein abundance profiles of the NCI-60 cell lines were 
identified by first grouping proteins (nodes) together 
into clusters of highly co-correlated members based on 
their degree of co-correlation (edges). For measuring the 
coexpression similarity between proteins, we used a signed 
Pearson correlation. For adjacency matrix construction, 
soft thresholding was used. The scale-free fitting index 
approached a local maximum at β = 12 (Supplementary 
Figure S3). This threshold approximately achieves scale 
free topology, meaning that the node degree distribution 
approximately follows the power law. Therefore, the co-
correlation matrix was raised to the power of 12 to create 
the adjacency matrix. Finally, the adjacency matrix was 
converted into a topological overlap matrix, and the 
corresponding dissimilarities (1 – the topological overlap 
matrix) was used for module detection via hierarchical 
clustering. The minimum number of proteins required per 
module was set to 30, and the mergeCutHeight was set to 
0.25, such that sufficiently similar modules were merged 
revealing 15 modules. Module eigenproteins, a synthetic 
measure of module belonging, were then related to the 
quantity of vesicles secreted per cell previously collected 
[28] by calculating Pearson correlation coefficients. 

The module most significantly associated with particle 
secretion was retained for enrichment analysis.

Comparison between vesicle and whole-cell 
molecular profiles

Co-inertia analysis (CIA; [66, 67]) was used to 
examine similarities between the vesicle proteome and 
cellular proteome and transcriptome across the NCI-60 cell 
lines. Microarray gene expression data was downloaded 
from the NCBI Gene Expression Omnibus [68] (accession 
number GSE32474; [69, 70]). Whole-cell proteome data 
was obtained from the NCI60 proteome resource (http://
proteomics.wzw.tum.de/nci60; [28]). Spectral count data 
from the whole-cell dataset was processed analogously to 
the EV proteome dataset for comparability: raw spectral 
count data published by Moghaddas Gholami et al. were 
normalized with DESeq2 following removal of all proteins 
not found with at least one count in 40 or more samples, 
and further transformed with the VST function. NCI-60 
cell lines not included in all three datasets were excluded 
from this analysis, leaving 56 samples in total. Differences 
between samples and molecular assays were analyzed and 
visualized with co-inertia analysis using the R omicade4 
package [71] in the R statistical framework.

Protein set enrichment analysis

To identify proteins previously found in EVs, 
the Vesiclepedia database of vesicular proteins was 
downloaded (Version 3, 9 Jan 2015) from microvesicles.
org/download. The Database for Annotation, Visualization, 
and Integrated Discovery (DAVID) v6.7 [72, 73] was 
used for functional (GOTERM_BP_FAT) and pathway 
(KEGG_PATHWAY) analyses of proteins found in the 
[NCI-60]stringent dataset (Figure 2A-2B). Enrichment of 
cellular compartment terms (Figure 2C) was analyzed 
using FunRich v3 [74].

For further interpretation of the target WGCNA 
module, enrichment of biological processes was performed 
using DAVID: GOTERM_BP_FAT. Proteins entered 
into the WGCNA analysis were used as the background 
dataset, and proteins within the target module were used 
as the target list. All terms with a p-value (Benjamini 
or Benjamini-Hochberg adjusted) less than 0.05 were 
considered significant and ranked by the number of 
proteins identified in the group.
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