Reviews:
Whole genome DNA methylation: beyond genes silencing
Metrics: PDF 4537 views | HTML 9507 views | ?
Abstract
Roberto Tirado-Magallanes1,2, Khadija Rebbani1, Ricky Lim1, Sriharsa Pradhan3, Touati Benoukraf1
1Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore, Singapore
2Computational Systems Biology Team, Institut de Biologie de l’Ecole Normale Supérieure (IBENS), INSERM, Ecole Normale Supérieure, PSL Research University, 75005 Paris, France
3New England Biolab Inc., Ipswich, MA 01938, USA
Correspondence to:
Touati Benoukraf, email: [email protected]
Keywords: DNA methylation, bisulfite sequencing, gene regulation, chromatin modeling, imprinting
Received: August 11, 2016 Accepted: November 07, 2016 Published: November 24, 2016
ABSTRACT
The combination of DNA bisulfite treatment with high-throughput sequencing technologies has enabled investigation of genome-wide DNA methylation at near base pair level resolution, far beyond that of the kilobase-long canonical CpG islands that initially revealed the biological relevance of this covalent DNA modification. The latest high-resolution studies have revealed a role for very punctual DNA methylation in chromatin plasticity, gene regulation and splicing. Here, we aim to outline the major biological consequences of DNA methylation recently discovered. We also discuss the necessity of tuning DNA methylation resolution into an adequate scale to ease the integration of the methylome information with other chromatin features and transcription events such as gene expression, nucleosome positioning, transcription factors binding dynamic, gene splicing and genomic imprinting. Finally, our review sheds light on DNA methylation heterogeneity in cell population and the different approaches used for its assessment, including the contribution of single cell DNA analysis technology.
All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 13562