Oncotarget

Research Papers:

SHP2 phosphatase as a novel therapeutic target for melanoma treatment

Ruo-Yu Zhang _, Zhi-Hong Yu, Lifan Zeng, Sheng Zhang, Yunpeng Bai, Jinmin Miao, Lan Chen, Jingwu Xie and Zhong-Yin Zhang

PDF  |  HTML  |  Supplementary Files  |  How to cite

Oncotarget. 2016; 7:73817-73829. https://doi.org/10.18632/oncotarget.12074

Metrics: PDF 3352 views  |   HTML 3227 views  |   ?  


Abstract

Ruo-Yu Zhang1, Zhi-Hong Yu1, Lifan Zeng2, Sheng Zhang1, Yunpeng Bai1, Jinmin Miao1, Lan Chen1, Jingwu Xie3, Zhong-Yin Zhang1,4

1Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA

2Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA

3Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA

4Department of Chemistry, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA

Correspondence to:

Zhong-Yin Zhang, email: [email protected]

Keywords: melanoma, protein tyrosine phosphatase, SHP2, SHP2 inhibitor, drug discovery

Received: May 07, 2016    Accepted: September 02, 2016    Published: September 16, 2016

ABSTRACT

Melanoma ranks among the most aggressive and deadly human cancers. Although a number of targeted therapies are available, they are effective only in a subset of patients and the emergence of drug resistance often reduces durable responses. Thus there is an urgent need to identify new therapeutic targets and develop more potent pharmacological agents for melanoma treatment. Herein we report that SHP2 levels are frequently elevated in melanoma, and high SHP2 expression is significantly associated with more metastatic phenotype and poorer prognosis. We show that SHP2 promotes melanoma cell viability, motility, and anchorage-independent growth, through activation of both ERK1/2 and AKT signaling pathways. We demonstrate that SHP2 inhibitor 11a-1 effectively blocks SHP2-mediated ERK1/2 and AKT activation and attenuates melanoma cell viability, migration and colony formation. Most importantly, SHP2 inhibitor 11a-1 suppresses xenografted melanoma tumor growth, as a result of reduced tumor cell proliferation and enhanced tumor cell apoptosis. Taken together, our data reveal SHP2 as a novel target for melanoma and suggest SHP2 inhibitors as potential novel therapeutic agents for melanoma treatment.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 12074