Research Papers:
A lupus anti-DNA autoantibody mediates autocatalytic, targeted delivery of nanoparticles to tumors
PDF | HTML | Supplementary Files | How to cite
Metrics: PDF 2412 views | HTML 2826 views | ?
Abstract
Zeming Chen1,2, Jaymin M. Patel3, Philip W. Noble4, Cesar Garcia1, Zhangyong Hong2, James E. Hansen4,5, Jiangbing Zhou1,6
1Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
2State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
3Department of Medical Oncology, Yale University, New Haven, CT 06510, USA
4Department of Therapeutic Radiology, Yale University, New Haven, CT 06510, USA
5Yale Cancer Center, Yale University, New Haven, CT 06510, USA
6Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
Correspondence to:
Jiangbing Zhou, email: [email protected]
James E. Hansen, email: [email protected]
Keywords: nanoparticles, autocatalysis, targeted delivery, anti-DNA autoantibody, breast cancer
Received: May 06, 2016 Accepted: July 19, 2016 Published: August 2, 2016
ABSTRACT
Strategies to target nanoparticles to tumors that rely on surface modification with ligands that bind molecules overexpressed on cancer cells or the tumor neovasculature suffer from a major limitation: with delivery of toxic agents the amount of molecules available for targeting decreases with time; consequently, the efficiency of nanoparticle delivery is reduced. To overcome this limitation, here we propose an autocatalytic tumor-targeting mechanism based on targeting extracellular DNA (exDNA). exDNA is enriched in the tumor microenviroment and increases with treatment with cytotoxic agents, such as doxorubicin (DOX), due to release of DNA by dying tumor cells. We tested this approach using poly(lactic-co-glycolic acid) (PLGA) nanoparticles surface-conjugated with fragments of 3E10 (3E10EN), a lupus anti-DNA autoantibody. We demonstrated that 3E10EN-conjugated nanoparticles bound to DNA and preferentially localized to tumors in vivo. The efficiency of tumor localization of 3E10EN-conjugated, DOX-loaded nanoparticles increased with time and subsequent treatments, demonstrating an autocatalytic effect. 3E10EN-conjugated DOX-loaded nanoparticles exhibited a significant anti-tumor effect that was superior to all controls. This work demonstrates the promise of autocatalytic drug delivery mechanisms and establishes proof of concept for a new anti-DNA autoantibody-based approach for enhancing delivery of nanoparticles to tumors.
All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 11015